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1 Self correcting memories from squeezing dynam-
ics

Consider constructing a robust self-correcting classical memory in d > 1 spatial di-
mensions such that 1) the state space on each site is {±1}, and 2) the dynamics are
translation invariant in both space and time. The most well-known way of doing this—
and indeed the only way I have seen in the literature, other than Gac’s mysterious
automaton—is Toom’s rule. Toom’s rule robustly encodes a single bit in the sign of
the magnetization, and a threshold is achieved by using corner-shaped majority votes,
which eliminate minority domains in a ballistic fashion by eroding them from their
corners.

Toom’s rule is however not the only way of robustly eroding minority domains.
Toom’s rule attempts to locally identify minority domains using the fact that they are
convex, and hence must possess corners. In d > 1, it is however possible to correct
minority domains without first identifying wether or not they belong to the minority
spin species.

This is done by engineering dynamics which “squeezes” domains in an anisotropic
fashion. Consider for definiteness d = 2. Roughly speaking, any rule which is such
that

“clusters of +1 spins expand vertically, and clusters of −1 spins expand horizontally”
(1)

will yield a self-correcting memory. Under this dynamics, a minority +1 domain will
be made progressively narrower along the x direction until it is eventually destroyed,
while a minority −1 will be similarly destroyed by shrinking along the y direction (see
Fig.1). Generalizations to d > 2 dimensions are straightforward: as long as there are
distinct directions along which both +1 and −1 spins expand, self-correcting dynamics
can be achieved.
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1.1 Automaton dynamics: synchronous and asynchronous up-
dates

The models considered in these notes will all be formulated within the context of
discrete-time probabilistic cellular automaton dynamics, which we now define. Each
model will be defined by an automaton rule A that determines how spins are updated
in the absence of noise. The rule A gives a set of instructions for determining how the
spins are to be updated, viz. it specifies a set of functions fi({sj(t)}) that determine
si(t+1) in terms of the spins at time t (these functions may be stochastic, with e.g. a
random type of update being chosen at each step). All of the models we consider will
have translation-invariant update functions for which si(t + 1) is determined only by
those sj(t) with j an O(1) number of sites away from i.

There are two main classes of automata dynamics that we will consider, distin-
guished by whether the updates occur in a coordinated or uncoordinated fashion across
all lattice sites.

Definition 1. A synchronous automaton Asynch performs a simultanous update of all
spins at each time step:

Asynch : si(t+ 1) = fi({sj(t)}) ∀ i. (2)

Definition 2. An asynchronous automaton Aasynch operates by randomly choosing
lattice sites at which to update spins. In a system of N spins, it most naturally
proceeds in time steps of length 1/N , where at each step,

Aasynch : si(t+ 1/N) =

{
fi({sj(t)}) with prob. 1/N

si(t) with prob. 1− 1/N
(3)

We will model the effects of noise by assuming that each time a spin is updated,
it is updated to the (correct) value determined by the update rule in question with
probability 1−p, and with probability p is replaced by a Bernoulli random variable with
bias η. Thus whenever the clean dynamics instructs us to replace si(t) by fi({sj(t)}),
we instead do

si(t) 7→

fi({sj(t)}) with prob. 1− p

±1 with prob. p
1± η

2

(4)

Our threshold theorems will not depend on assuming this form spacetime iid noise—
indeed they will only require stochastic p-bounded noise for some O(1) value of p1—but
for simplicity we will specify to this type of noise throughout.

1.2 Two squeezing rules
We now concretely define two types of squeezing codes S2, S3 that we will study ex-
tensively in the following. Both rules are most naturally formulated in a Floquet
fashion: for synchronous updates, the dynamics applies +1 spin expanding updates on

1Meaning that at each time step, the probability for a collection of M spins to be updated in a
way which disagrees with the noise-free automaton rule is upper bounded by pM .
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even time steps, and −1 spin expanding updates on odd time steps (for asynchronous
updates, the type of update is chosen randomly).

To write down the update rules, it will be convenient to use logical notation where
a +1 spin is regarded as true and a −1 spin is regarded as false. In two dimensions,
the S2 rule (with synchronous updates) is defined as

S2 : sx,y(t+ 1) =

{
sx+1,y(t) ∧ sx−1,y(t) t ∈ 2Z
sx,y+1(t) ∨ sx,y−1(t) t ∈ 2Z+ 1

(5)

The other automaton we will focus on is defined by adding on the site to be updated
to the RHS:

S3 : sx,y(t+ 1) =

{
sx+1,y(t) ∧ sx,y(t) ∧ sx−1,y(t) t ∈ 2Z
sx,y+1(t) ∨ sx,y(t) ∨ sx,y−1(t) t ∈ 2Z+ 1

(6)

As mentioned above, for asynchronous updates, a random type of update (vertical or
horizontal) is chosen at each site. We will always take the probabilities of vertical
and horizontal updates to be equal; favoring one type of update over the other has
essentially the same effects as modifying the strength and bias of the noise.

The differences between S2, S3 are superficially rather minor, but interestingly will
be seen to lead to very different physics.

Both of these rules—and more generally, any squeezing rule—break detailed bal-
ance. To show this, it is sufficient to find a closed loop of states Ai, i = 1, . . . , n in con-
figuration space A1 → · · · → A1 such that

∏n
i=1 P (Ai → Ai+1)/P (An−i+1 → An−i) 6=

1. One such loop is displayed below for the S2 rule at η = 0; the arrows indicate the
respective transition probabilities (multiplied by the system size) for asynchronous
updates:

(7)

where the gray squares represent +1 spins in a background of −1 spins. For this
sequence

∏n
i=1 P (Ai → Ai+1)/P (An−i+1 → An−i) = 2/p − 1, which breaks detailed

balance except in the trivial (“infinite temperature”) case where p = 1. When p = 0
so that the dynamics is error-free, the loop around which the system travels following
the → arrows is irreversible, automatically implying that DB is broken.

These automata are dinstinct from Toom’s rule in a few ways. One is in terms of
symmetries: instead of the internal Z2 spin-flip symmetry of Toom’s rule, these rules
possess only a mixture of a Z2 spin flip and C4 rotation symmetry, generated by

R̃π/2 = Rπ/2 ◦X (8)

where X performs a global spin flip (there are other squeezing automata which lack
this symmetry but nevertheless possess thresholds). Another difference is that these
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rules do not involve majority voting. A third difference is that unlike Toom’s rule,
minority domains with an aspect ratio of < 1 or > 1 (depending on their spin) will
get bigger before they are eliminated, so the magnetization may not be monotonic
in time even in the absence of errors. As an extreme example, a minority domain of
−1 spins that spans the system vertically will always grow to overwhelm the system,
no matter how thin the initial domain is2 (and the analogous π/2-rotated statement
for a minority +1 domain). This example shows us a further distinction: in Toom’s
rule a homologically-nontrivial straight strip of minority spins never gets erased under
noise-free dynamics, meaning that the noise-free system possesses (extensively many)
distinct fixed points under periodic boundary conditions. The noise-free S2, S3 by
contrast possesses only two absorbing states.3

Figure 1: Elimination of a minority domain under asynchronous S3 in a system of
size L = 500 with unbiased noise of strength p = 0.2. Performing a global spin flip on
the initial configuration would result in the domain being squeezed in the orthogonal
direction.

1.3 Threshold theorems for synchronous updates
In this section we prove that any synchronous automaton that squeezes domains in
the way defined above constitutes a robust self-correcting memory.

To discuss the proof, we need some notation. A necessary (but not sufficient)
condition for an automaton A to possess a threshold is that it be able to correct
against minority domains of errors in the absence of noise. This is formalized in the
following definition:

Definition 3. Let |±1〉 be the state of an infinite system in which all spins are ±1.
Consider any spin configuration obtained by starting with |−1〉 and flipping a finite
number of spins to +1. An automaton A is an eroder if 1) in the absence of errors,
the action of A on any such state produces |−1〉 in finite time, and 2) A leaves |−1〉
invariant.

2This is true for the S3 rule; for S2 the domain needs to be at least two sites thick.
3Toom can be “fixed” in this regard by simply putting it on a different lattice; this is the content

of Kubica and Preskill’s paper [4] (which does not provide a local decoder for the 3d TC, despite the
abstract). A different fix is to just add in below-threshold noise; this coarsens and then destroys the
strips.
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Squeezing codes are all eroders: this follows simply because the region of +1 spins
is bounded by a rectange whose width (but not necessarily height) decreases linearly
with time (in the absence of errors).

For memories, we are interested in computing the relaxation times τ(σ) of the two
logical states:

τ(σ) = min{t : E(σM(t)) < ε), M(0) = σ}, (9)

where M(t) =
∑

i si/L
2 is the magnetization, E is over noise realizations, ε is an

arbitrary O(1) constant, and σ = ±1 determines the logical state in which the memory
is initialized.

We can prove bounds on τ(σ) using old results from Toom. First, note that the
rules S2, S3 are monotone, meaning that they are determined by monotone Boolean
functions.4 When then use the following (very nontrivial) theorem of Toom (see also
[5] for a more accessible exposition):

Theorem 1 (Toom, [8]). All monotone two-state eroders are robust, meaning that there
exists a pc such that when p < pc, a system intitialized in |−1〉 has the magnetization
remains bounded away from 0 from below by an O(1) constant for long times. More
precisely, for a system of linear size L,

A a monotone two-state eroder =⇒ τ(−1) = ω(L0). (10)

In practice we expect τ to be not just divergent but in fact to scale superpolyno-
mially in system size. Indeed, for all memories explicitly considered in this work, we
will always have τ ∼ exp(Lα) for some O(1) constant α.

The above definition about eroders singles out only the logical state |−1〉. To
discuss how the |+1〉 logical state is treated, to each automaton A, we define the dual
automaton A∨ as the automaton whose transition rules obtained by negating those of
A; schematically A∨ = ¬A¬. Thus for example

S∨
2 : sx,y(t+ 1) =

{
¬(¬sx+1,y(t) ∧ ¬sx−1,y(t)) = sx+1,y(t) ∨ sx−1,y(t) t ∈ 2Z
¬(¬sx,y+1(t) ∨ ¬sx,y−1(t)) = sx,y+1(t) ∧ sx,y−1(t) t ∈ 2Z+ 1

(11)
which is just the π/2-rotated version of S2. This definition is needed because being
a robust eroder is not enough to serve as a memory: it only guarantees that one of
the two logical states (viz. |−1〉) is preserved under noise (a well-known example of a
robust eroder which does not function as a memory is Stavskaya’s model).

For an automaton A to have a robust memory, we need both A and A∨ to be
eroders. This is clearly true for S2,3, since S∨

2,3 are obtained from S2,3 by a π/2 rotation.
Therefore

Theorem 2. The automata S2,3 possess a nonzero threshold under synchronous up-
dates.

4Viz. those such that changing inputs from −1 (false) to +1 (true) cannot decrease the value of
the output. Any function made only from ∧s and ∨s (without any ¬s) is montonone because both ∧
and ∨ are monotone.
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More generally, this will be true for any automaton which performs both +1 and
−1 squeezing rules along at least two independent directions (the number of +1 and
−1 squeezing directions needn’t be the same). Thus any such “squeezing code” will
possess a nonzero threshold (again, at least for synchronous updates).

We now verify this numerically for S3, by studying the behavior of the relaxation
time τ of the least-stable logical state: τ ≡ minσ τ(σ) (a much more detailed numerical
analysis of both models appears in Sec. 4). Below threshold, we fit this as a function
of linear system size L to a function of the form

τ ∼ eαL/p. (12)

For the S3 update rule with unbiased noise (η = 0) and synchronous updates, we
find
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where the dashed lines are fits to the expected exponential form. Note that we indeed
have αL ∝ L, so that the divergence of τ is quite rapid below threshold.

With a (quite strong) bias of η = 1/2, we find (note: x axis label should be p)
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so that the same scaling with q and L is obtained, just with the threshold moved lower
(albeit to still a rather high value of ∼ 15 percent!).

1.4 Implementation in time-dependent Glauber dynamics
I strongly suspect that self-correction is impossible for dynamics that obeys detailed
balance, the proof likely being essentially that of Gibbs’ phase rule. However, unlike
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Toom’s rule, squeezing dynamics is possible to induce by a rather natural form of
time-dependent Glauber dynamics, viz. dynamics that obeys detailed balance with
respect to a time-periodic Hamiltonian H(t). This is nice because a system with a
time-dependent Hamiltonian placed in contact with a (time-independent) thermal bath
seems nicer from a physics perspective than dynamics driven by a overseer capable of
performing L-shaped majority voting (as in Toom’s rule).

To reproduce the desired squeezing of domain walls, it suffices to let H(t) be an
anisotropic Ising model:

H(t) = −Jv(t)
∑
i

sisi+ŷ − Jh(t)
∑
i

sisi+x̂ − h(t)
∑
i

si (15)

where Jv,h and h are periodic functions of t. For simplicity we will take Jv, Jh to be
positive at all times, but will (have to) allow the sign of h to change.

Consider a square minority domain of +1 spins. At large enough β we can make
it expand horizontally faster than it expands vertically if (for example) h > 2Jv but
h < 2Jh. In this case the vertical edges of the + domain will expand quickly, because
each spin flip performed to expand them lowers the energy. The horizontal edges of the
domain by contrast will expand slowly, with a energy-lowering process only possible
after bh/(2Jv)c > 1 spins are flipped in a row at the domain edge. Thus if we choose

2Jv < h < 2Jh, (16)

+ domains will for sure get fatter faster than they get taller. We thus can run Glauber
dynamics with these parameters for a fixed time interval, and then switch to a set of
parameters which squeeze in the opposite direction, viz. to a set of values where now

2Jh < −h < 2Jv. (17)

The simplest way to do this is to simply interchange Jv ↔ Jh and send h → −h at
regular invervals (which amounts to periodically applying the operator R̃π/2 defined
above).

In numerics, we will take a parametrization of the couplings in the form

H(t) = −(J − J̃ cos(ωt))
∑
i

sisi+ŷ − (J + J̃ cos(ωt))
∑
i

sisi+x̂− (h+ h̃ cos(ωt))
∑
i

si.

(18)
To be concrete, we will take

J̃ =
J

5
, h̃ = 1, J =

5

8
, (19)

and will let h—which breaks the Z2 symmetry of the time-averaged Hamiltonian, and
corresponds to η in the noise-based picture of the dynamics—be a tunable parameter.
We will fix ω to be a constant of order J (viz. independent of L), although we may
take ω � J without destroying the phase transition (in fact we could probably take
ω ∼ 1/ log(L) if desired; obviously ω ∼ 1/L is too slow though).
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At h = 0 and ω = 2π/5, we find relaxation times of
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At a nonzero bias of h = 1/20, we have
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shifting the threshold β by a bit, but still giving a scaling which looks to have a
converged threshold at large system sizes.

As a quick illustration of the phase diagram, consider fixing J and vary h by letting
h = ηh̃ and varying η. Low-effort numerics at ω = 2π give
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where we start in a state with m = +1 and bias things towards −1.
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2 Mean field theory and fluctuation-stabilized or-
der

We know from Toom’s theorem that S2,3 constitute robust memories in any dimen-
sion, provided they are updated synchronously. For asynchronous updates a different
calculation is required, which we turn to in this section by developing extended mean
field theories that allow us to understand the error-correcting properties and phase
diagrams of the asynchronously-updated S2,3 squeezing codes.

We will find that the asynchronously-updated S2 code has a threshold in all even
dimensions, provided the number of +1 and −1 squeezing directions are equal. How-
ever, the threshold noise strength vanishes as pc ∝ 1/d2 in the d → ∞ limit. This is
unusual because ordering normally becomes easier in higher dimensions, where fluc-
tuations are weaker. For S3 we will find an even more dramatic result: pc is nonzero
only when d = 2.

These results owe their existence to the fact that the order which arises in these
error-correcting codes is “fluctuation-stabilized”, with the stability of the ordered state
made possible only by spatial fluctuations in the magnetization. This fact is related
to why the order dissappears in larger dimensions, since fluctuations are weaker in
higher dimensions. For S2 pc is (roughly speaking) proportional to the strength of
fluctuations, while for S3 a critical fluctuation strength is required to maintain order,
even in the absence of other noise.

2.1 Operator formalism of automaton dynamics
In the calculations to follow, we will use the Doi-Peliti operator formalism to derive
dynamic mean-field equations. This formalism is slight overkill for the simplest mean
field treatments (which as we will see fail for S2,3), but significantly streamlines cal-
culations for more complicated treatments, including the cluster mean field approach
adopted below.

The Doi-Peliti formalism is based on writing the evolution of the full probability
distribution P ({si}) as a Markov equation of the form |∂tP 〉 = +H|P 〉 for a Fock-
space operator H which generates the dynamics. We will also abuse notation slightly
by defining |+〉 as the un-normalized uniform sum over all configurations, so that
normalization of P means 〈+|P 〉 = 1. Conservation of probability mandates that
|+〉 ∈ ker(HT ), and means that for any operator O, we may write an evolution equation
for the expectation value 〈O〉 as

∂t〈O〉 = 〈+|[O,H]|P 〉. (23)

The general program adopted below will be to calculate these evolution equations
for a few simple observables (such as the magnetization and short-ranged correlation
functions thereof), simplifying the expectation value on the RHS using an appropriate
type of mean field ansatz.

We are interested in two-state automata, and as such will write H in terms of the
operators

ai ≡
Xi − iYi

2
, ni ≡

1− Zi

2
, ni ≡ 1− ni, (24)
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which satisfy the usual
[ni, aj] = −δi,jaj, [ni, a

†
j] = δi,ja

†
j. (25)

H is constructed by writing down enumerating the ways that spins can flip under the
dynamics, while taking care to ensure that 〈+|H = 0. As a simple example, diffusion
of hardcore particles on a lattice would be controlled by the Hamiltonian

H =
∑
〈i,j〉

(a†iaj − ninj), (26)

where the second term ensures probability conservation 〈+|H = 0 on account of the
relations

〈+|ai = 〈+|ni, 〈+|a†i = 〈+|ni. (27)
Suppose that the noise-free automaton applies l different types of updates, each

occuring with probability qa, a = 1, . . . , l (e.g. in two dimensions S2,3 both contain
two types of updates, each occuring with probability 1/2). Then in general, the noisy
automata dynamics under consideration (where noise of bias η is applied with strength
p) can always be formulated using the Hamiltonian

H =
∑
i

(
(a†i − ni)

(
(1− p)

l∑
a=1

qaΠ
a,−1→1
i + p

1 + η

2

)

+ (ai − ni)

(
(1− p)

l∑
a=1

qaΠ
a,1→−1
i + p

1− η

2

))
,

(28)

where Πa,±1→∓1
i is a projector onto the states that would result in the spin at site i

flipping from ±1 to ∓1 under the action of the update rule labeled by a. For the
dynamics of interest to us, these projectors will always be constructed as a polynomial
in the operators nj for j nearby i. Since we will only be interested in the dynamics of
expectation values of products of the ni, we only need calculate the commutator of H
with ni. This is easily calculated: let a given such operator be written as O =

∏
i∈I ni

for some finite set of indices I. Letting Ii = I \ {i}, a short calculation gives

∂t〈O〉 =
∑
i∈I

〈∏
j∈Ii

nj

(
(1− p)

(
l∑

a=1

Πa,→1
i − ni

)
+ p

(
1 + η

2
− ni

))〉
. (29)

where Πa,→1
i is the projector onto all states for which an application of the automaton

update a would result in the spin at site i being +1.
Even in the simplest case where O = ni, this equation is in general untractable: the

RHS will involve expectation values of products of the nj (unless each Πa,→1
i = nkα for

some site ka, in which case the dynamics is trivial). To solve for the dynamics of 〈ni〉
we must therefore also calculate evolution equations for multi-body products of the
ni, which in turn involve yet higher-order expectation values. This infinite regress is
halted using an appropriate type of mean-field ansatz, which truncates the equations
after a certain weight of operator is reached, and generates a heirachry of evolution
equations which are then jointly analyzed.

Before discussing the squeezing codes—for which higher body correlation functions
need to be inclued in the heirachry—we first review how mean field theory works for
the simpler (and less interesting) case of Toom’s rule.
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2.2 Warmup: Toom’s rule
First consider the case of Toom’s rule in d = 2. The noiseless automaton possesses
only a single type of update, for which a −1 spin at site i flips under the dynamics
if both si+x, si+y are +1, and analogously for a +1 spin. The relevant projector is
accordingly

Π→1
i = nini+x + ni+xni+y + nini+y − 2nini+xni+y. (30)

The simplest mean field ansatz assumes that correlation functions on different sites
factorize: 〈∏

i∈I

ni

〉
→
∏
i∈I

〈ni〉. (31)

Under this assumption, and re-writing things in terms of the expected magnetization

〈ni〉 =
1 +mi

2
, (32)

we obtain

∂tmi = p(η −mi) +
1− p

2
(−mi +mi+x +mi+y −mimi+xmi+y) . (33)

If we specify to spatially uniform configurations mi = m, the mean-field equations
will involve only a single variable m. In this case there is no possibility of non-
reciprocity in the equations of motion, and we may always write ∂tm = −δFeff/δm for
some effective free energy Feff . In the present setting, doing so gives

∂tm = pη +
1− 3p

2
m− 1− p

2
m3, (34)

corresponding to an effective free energy of

Feff = −pηm+
3p− 1

4
m2 +

1− p

8
m4. (35)

This free energy is bounded, and at η = 0 has an ordering transition at pc = 1/3. The
full phase diagram is

0.0 0.1 0.2 0.3 0.4 0.5
p
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0.5
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m

(36)
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with the transition at η = 0 being second order (note: the sign of m in this plot should
be flipped).

This “phase diagram” is obtained by finding the minimum of Feff that is encoun-
tered by the initial state m = −1 as it evolves according to the above mean field
equations. When η > 0, this minimum is metastable, and a solution with m > 0
always has lower free energy. The nontrivial statement about Toom’s rule is that the
lifetime of this metastable state is exponentially long (in L), but there is of course
no way of assessing this statement within the context of mean field theory (the infi-
nite time non-equilibrium steady state is always dominated by configurations whose
magnetization agrees with that of η, so the phase diagram is only a dynamic one:
the “thermodynamics” of the non-equilibrium steady states are trivial when η 6= 0).
Having a mean field phase diagram like this is thus a necessary—but definitely not
sufficient—condition to get a self-correcting memory. Indeed, any dynamics that pro-
ceeds by performing 3-site majority votes will yield the same phase diagram, but only
votes that occur in Toom’s L-shaped geometry will produce an extensively long lifetime
for the metastable state.

We now briefly comment on the critical point at η = 0. The most recent numerical
work studying this critical point appears to be [6]; see also [7] and the original study
[1]. The conclusion of these works is that the exponents obtained for asynchrnous
updates are the same as in the 2D Ising model, viz. β ≈ 0.13, ν = 1, γ ≈ 1.8. For
synchronous updates the exponents are different (β ≈ 0.11, ν ≈ 0.9, γ ≈ 1.5), but the
ratios β/ν, γ/ν are equal to the Ising values. Provided hyperscaling holds in this non-
equilibrium setting (it should since the detailed balance violating terms are irrelevant),
this means that the anomalous dimension η will also match the Ising value of 1/4.

The fact that asynchronous updates yield an Ising CFT can be understood by
showing that all the non-equilibrium aspects of the problem—which only appear when
spatial fluctuations of m are included in the free energy—yield terms in the Langevin
equation which are irrelevant under RG (at least within the context of the ε expansion
in the dynamic RG formalism). This observation was first made in the nice paper [2];
a more detailed analysis will be given later.

2.3 S2

We will consider a slightly general setup in which ∧ squeezing (−1 expansion) occurs
along the first (d − r)/2 spatial directions, and ∨ squeezing (+1 expansion) occurs
along the remaining (d+ r)/2 directions, with each direction of update occuring with
equal probability qa = 1/d, a = 1, . . . , d. This dynamics possesses a Z2 symmetry
generated by a spin flip and a reflection only when d is even and r = 0, and we will
see momentarily that order is possible only when this symmetry is present.

The projectors in question are

Πa,→1
i =


ni+ani−a a ≤ d− r

2

1− ni−ani+a a >
d− r

2

(37)
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For any integer l > 0, define the “domain wall” operators

dlai ≡ nini+la

dlai ≡ nini+la

(38)

and define

Di ≡
(d−r)/2∑
a=1

d2ai −
d∑

a=(d−r)/2+1

d2ai . (39)

Then the time evolution of a generic product of ni operators is given by

∂t〈O〉 =
∑
i∈I

〈∏
j∈Ii

(
p

(
1 + η

2
− ni

)
+

1− p

d

(
d+ r

2
− dni +Di

))〉
(40)

2.3.1 Fluctuationless mean field

Let us first examine the fluctuationless limit, where we take all connected correlation
functions of ni to vanish. We will furthermore assume that the expectation value of
ni is translation invariant, as keeping track of spatial derivatives in the mean field
equations will not be important for any of the main points to follow. With these
assumptions we have

〈D〉 = (d+ r)

(
〈n〉 − 1

2

)
− r〈n〉2, (41)

and so
∂t〈n〉 = p

(
1 + η

2
− 〈n〉

)
+

1− p

d
r〈n〉(1− 〈n〉). (42)

We will usually find it more intuitive to write our final evolution equations in terms
of the magnetization

mi = 2ni − 1, (43)

for which (omitting the 〈 〉s)

∂tm = p(ηeff −m)− r
1− p

2d
m2 (44)

where the effective bias is ηeff = η + 1−p
2dp

r. This evolution equation corresponds to an
effective free energy of

Feff = −pηeffm+
p

2
m2 + r

1− p

6d
m3. (45)

There are a few things to take away from this. First, consider the symmetric case
where d is even and r = 0. We then get the extremely simple

∂tm = p(η −m), (46)

which is the evolution equation we would get in the presence of noise alone: m simply
relaxes to the average value η of the noise over a timescale 1/p. Thus the effects of
the error-correction being performed by the S2 automaton do not even appear when
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fluctuations of the magnetization are neglected, and there is clearly no possibility of
having an ordered phase in this limit. It is of course possible for the presence of
fluctuations to change this conclusion, but since fluctuations enter only at an order of
at most 1/d, the critical noise strength must vanish with d at least as fast as pc ∼ 1/d
(we will see that in fact pc ∼ 1/d2).

Secondly, when r 6= 0, the absence of symmetry is reflected in both the modification
of η, and in the generation of an m3 term in the effective free energy. This gives a free
energy with only one local minimum (the other extremal point is a local maximum),
which is not compatible with the existence of a stable memory. Furthermore, the size
of both the induced bias and the m2 term appearing in ∂tm are O(1) as p → 0. Thus
our conlcusion about the absence of two stable fixed points for m in the range [−1, 1]
will remain true beyond the present mean field approximation as long as d is large
enough. This means that there can be no order in large enough d with asynchronous
updates if r 6= 0, viz. if the Z2 symmetry is not present. We will later numerically
check that in fact pc = 0 when d = 3: thus with asynchronous updates, S2 can only
order when d ∈ 2Z and r = 0. We will accordingly specify to this case in the remainder
of this subsection.

2.3.2 Adding fluctuations

Assuming that the symmetries that permute among the first d/2 dimensions and the
last d/2 are not spontaneously broken (this statement is vacuous when d = 2, and
when d > 2 it is numerically observed to be true), we may write

〈D〉
d

=
〈d2x〉 − 〈d2y〉

2
, (47)

where x is one of the first d/2 coordinates, and y is one of the last d/2. The exact
evolution equation for 〈n〉 is then

∂t〈n〉 =
1

2

(
1 + ηp− 2〈n〉+ (1− p)(〈d2x〉 − 〈d2y〉)

)
. (48)

We thus need to solve for the as-yet unknown expectation values 〈d2x〉, 〈d2y〉. A
straightforward calculation gives

∂t〈dla〉 = (1 + ηp)〈n〉 − 2〈dla〉+ 2
1− p

d
〈njDj+la〉 (49)

where we have used 〈njDj+la〉 = 〈nj+laDj〉.5 By symmetry, we similarly obtain

∂t〈dla〉 = (1− ηp)〈n〉 − 2〈dla〉 − 2
1− p

d
〈njDj+la〉. (50)

Again under these assumptions, we have

〈njDj+2a〉 = 〈njnj+xnj+3x〉+(d/2−1)〈njnj+2x−wnj+2x+w〉−
d

2
〈njnj+2x−ynj+2x+y〉 (a ≤ d/2)

(51)
5Translation implies 〈nj+laDj〉 = 〈njDj−la〉 and then 〈dla〉 = 〈d−la〉.
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and

〈njDj+2a〉 = −〈njnj+ynj+3y〉−(d/2−1)〈njnj+2y−znj+2y+z〉+
d

2
〈njnj+2x−ynj+2x+y〉 (a > d/2)

(52)
where w 6= x is an arbitrary coordinate with w ≤ d/2 and z 6= y is a coordinate with
z > d/2.

We will truncate the heirarchy of cluster mean-field equations by only keeping
correlations between nearest-neighbors and those next-nearest-neighbors which are of
the form (i, i± 2a) for some a (thus for example we do not keep correlations between
nnn pairs like (i, i+a+b) for a 6= b—this choice keeps the minimal number of variables
needed to get an ordered phase). This means that we take e.g.

〈njnj+2a−bnj+2a+b〉 → 〈n〉〈d2b〉 (53)

and6

〈njnj+anj+3a〉 →
〈d1a〉〈d2a〉

〈n〉
. (54)

Therefore

〈njDj+2a〉 =
〈d1x〉〈d2x〉

〈n〉
+ (d/2− 1)〈n〉〈d2x〉 − d

2
〈n〉〈d2y〉 (a ≤ d/2) (55)

and

〈njDj+2a〉 = −〈d1y〉〈d2y〉
〈n〉

− (d/2− 1)〈n〉〈d2y〉+ d

2
〈n〉〈d2x〉 (a > d/2). (56)

Similarly,

〈njDj+a〉 = 〈d2x〉(1− 〈n〉) + d

2
〈n〉(〈d2x〉 − 〈d2y〉) (a ≤ d/2) (57)

and
〈njDj+a〉 = −〈d2y〉(1− 〈n〉) + d

2
〈n〉(〈d2x〉 − 〈d2y〉) (a > d/2) (58)

where we used relations like n2
j = nj and 〈njnj+a−bnj+a+b〉 → 〈n〉〈d2b〉 for a 6= b (the

latter following from our neglect of diagonal nnn correlations).
6This follows from P (njnj+anj+3a) = P (nj |nj+anj+3a)P (nj+anj+3a) =

P (nj |nj+a)P (nj+anj+3a) = P (njnj+a)P (nj+anj+3a)/P (nj+a) = 〈d1a〉〈d2a〉/〈n〉, where P (Πi∈Ini) is
the probability of finding ni = +1 at all sites in the set I, and our factorization assumption enters
in the second equality.
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Collecting results, our cluster mean field equations read

∂t〈n〉 =
1

2

(
1 + ηp− 2〈n〉+ (1− p)(〈d2x〉 − 〈d2y〉)

)
∂t〈d1x〉 = (1 + ηp)〈n〉 − 2〈d1x〉+ 2

1− p

d

(
〈d2x〉〈n〉+ d

2
〈n〉(〈d2x〉 − 〈d2y〉)

)
∂t〈d1y〉 = (1− ηp)〈n〉 − 2〈d1y〉 − 2

1− p

d

(
−〈d2y〉〈n〉+ d

2
〈n〉(〈d2x〉 − 〈d2y〉)

)
∂t〈d2x〉 = (1 + ηp)〈n〉 − 2〈d2x〉+ 2

1− p

d

(
〈d2x〉

(
〈d1x〉
〈n〉

− 〈n〉
)
+

d

2
〈n〉(〈d2x〉 − 〈d2y〉)

)
∂t〈d2y〉 = (1− ηp)〈n〉 − 2〈d2y〉 − 2

1− p

d

(
−〈d2y〉

(
〈d1y〉
〈n〉

− 〈n〉
)
+

d

2
〈n〉(〈d2x〉 − 〈d2y〉)

)
(59)

It will be more useful to write these equations in terms of variables that transform
in definite representations of the Z2 symmetry, viz. the magnetization and the linear
combinations

dl± ≡ dlx ± dly

2
. (60)

dl+ is neutral under the Z2 symmetry, while dl− transforms in the same way as m.
Some agebra turns the MF equations into (omitting 〈 〉s)

∂tm = pη −m+ 2(1− p)d2−

∂td
1+ =

1 + ηpm

2
− 2d1+ +

1− p

d

(
d2+ + (d− 1)md2−

)
∂td

1− =
ηp+m

2
− 2d1− +

1− p

d

(
−md2+ + (1 + d)d2−

)
∂td

2+ =
1 + ηpm

2
− 2d2+ + 4

1− p

d(1−m2)

(
d2+d1+ + d2−d1− −m(d2+d1− + d2−d1+)

)
+

1− p

d

(
(d− 1)md2− − d2+

)
∂td

2− =
m+ ηp

2
− 2d2− + 4

1− p

d(1−m2)

(
d1+d2− + d1−d2+ −m(d2+d1+ + d2−d1−)

)
+

1− p

d

(
(d− 1)d2− −md2+

)
(61)

Things become a bit nicer still if we write things not in terms of the dl±, but
rather in terms of the connected correlation functions of the magnetization. Define
the correlation functions

f la
i ≡ 〈mimi+la〉 − 〈mi〉〈mi+la〉, (62)

together with their linear combinations

f l± ≡ f lx ± f ly

2
. (63)

The f l± will vanish both at p = 0 and p = 1, where the system has no nontrivial
spatial correlations. A short calculation gives the following relations between dl± and
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f l±: (again assuming translation invariance and dropping spatial indices)

〈dl+〉 = 1

4
(f l+ + 1 +m2)

〈dl−〉 = 1

4
(f l− + 2m).

(64)

Substituting this in our previous MF equations yields, after some thankless algebra,

∂tm = p(η −m) +
1− p

2
f 2−

∂tf
1− = −2f 1− +

1− p

d

(
m(1−m2) + f 2− −mf 2+

)
∂tf

2− = −2f 2− +
1− p

d

(
f 1− +mf 1+ +

1

1−m2

(
f 1−f 2+ + f 1+f 2− −m(f 1−f 2− + f 1+f 2+)

))
∂tf

1+ = −2f 1+ +
1− p

d

(
1−m2 + f 2+ −mf 2−)

∂tf
2+ = −2f 2+ +

1− p

d

(
f 1+ +mf 1− +

1

1−m2

(
f 1+f 2+ + f 1−f 2− −m(f 1+f 2− + f 1−f 2+)

))
(65)

The trivial disordered state, which has m = f 1− = f 2− = 0, is easily seen to have
Z2-invariant fluctuations of size

f 1+ =
√

f 2+ =
1−

√
1− ζ2

ζ
, (66)

where we have defined
ζ ≡ 1− p

d
. (67)

In the d → ∞ limit we have

f 1+ =
1− p

2d
+O(1/d2), (68)

so that f 1+ ∼ 1/d and f 2+ ∼ 1/d2 to leading order, consistent with fluctuations being
suppressed as 1/d (this is essentially just a consequence of the central limit theorem).

In the ordered state, one may similarly verify the scalings m ∼ d0, f 1− ∼ 1/d,
and f 2− ∼ 1/d2. From this scaling and the equation for ∂tm, we thus conclude that
pc ∼ 1/d2. Indeed, one can find pc analytically by linearizing the mean field equations
about the disordered state, and then determining the point at which the disordered
solution becomes unstable. The details involve some fairly tedious algebra and will be
skipped; here we quote only the result

pc =
1

1 + 4d2
. (69)

In 2d, this predicts pc = 1/17 ≈ 0.058, which is about a factor of 2 larger than the
value observed numerically.
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The phase diagram in d = 2 one obtains from these equations gives a magnetization
which (unsurprisingly) looks like
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We may also look at the connected correlation functions f l±. The charge-neutral
flutuations f 1+ look like
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(71)

while the charged fluctuations f 1− are
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(72)

2.4 S3

We now consider the three-variable rule S3 (6), which as we will see has rather different
physics. Like S2, similar arguments show that S3 is disordered under asynchronous up-
dates in all cases where a Z2 symmetry is not present. For this reason we will continue
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to specify to even dimensions, with the number of ∧ and ∨ squeezing directions both
equal to d/2.

The relevant projector that determines the dynamics is now cubic in the number
operators:

Πa,→1
i =


ni+anini−a a ≤ d

2

1− ni−anini+a a >
d

2

. (73)

Define the operators

D1
i ≡

d/2∑
a=1

d2ai , D2
i ≡

d∑
a=d/2+1

d2ai . (74)

Then a generic product of number operators evolves as

∂t〈O〉 =
∑
i∈I

〈∏
j∈Ii

(
p

(
1 + η

2
− ni

)
+ (1− p)

(
1

2
− ni +

1

d
(niD

1
i − niD

2
i )

))〉
. (75)

2.4.1 Fluctuationless mean field

We begin by looking at the limit in which all correlation functions factorize and are
translation invariant. In this limit, we have

1

d
〈niD

1
i − niD

2
i 〉 =

1

8
(3m+m3). (76)

We then find
∂tm = pη − 1 + 3p

4
m+

1− p

4
m3 (77)

which corresponds to a free energy of

Feff = −pηm+
1 + 3p

8
m2 − 1− p

16
m4. (78)

The most important thing to note about this free energy is that it is not compatible
with the existence of an ordered phase: for all values of p, the disordered fixed point is
always stable, and the ordered fixed points are always unstable. Therefore like S2, no
ordering is possible within mean field theory. Unlike S2 though, fluctuation corrections
to this result cannot produce order once d is large enough, since in the present case the
mass term in Feff is positive and non-vanishing in the limit p → 0. Thus there must be
a critical dimension dc such that the system is disordered for all p as long as d > dc.
Numerically (as well as within the following mean field analysis) zthis dimension turns
out to be dc = 2, so that S3 with asynchronous updates orders only in two dimensions.

2.4.2 Adding fluctuations

The expectation values 〈njD
1
j 〉, 〈njD

2
j 〉 on the RHS involve sums of operators of the

form 〈nini+ani+2a〉. Since these do not factorize even when only nearest neighbors are
taken into account, we wil make our life easier by doing an extended cluster mean field
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theory involving only the d1a, taking correlation functions of the nj to factorize beyond
nearest neighbors (for S2 we were forced to account for nnn correlations since ∂t〈n〉
would otherwise trivially lead to 〈n〉 = (1 + η)/2). In this scheme, and working with
the assumption that translation and the relevant reflection symmetries are unbroken,
we have

〈njD
1
j 〉 =

d/2∑
a=1

〈d1aj−a〉〈d1aj 〉
〈nj〉

, 〈njD
2
j 〉 =

d∑
b=d/2+1

〈d1bi−b〉〈d1bi 〉
〈nj〉

. (79)

We then just need the evolution equations for 〈d1aj 〉. These are (here as before x is
any coordinate less than d/2 + 1, and y is any coordinate greater than d/2)

∂t〈d1xj 〉 = 1 + ηp

2
〈nj + nj+x〉 − 2〈d1xj 〉+ 1− p

d

(
〈d1xj (D1

j+x +D1
j )〉 − 〈njnj+xD

2
j+x + nj+xnjD

2
j 〉
)

∂t〈d1yj 〉 = 1− ηp

2
〈nj + nj+y〉 − 2〈d1yj 〉+ 1− p

d

(
〈d1yj (D2

j+y +D2
j )〉 − 〈njnj+yD

1
j+y + nj+ynjD

1
j 〉
)

(80)
For spatially uniform solutions, this simplifies to

∂t〈d1x〉 = (1 + ηp)〈n〉 − 2〈d1x〉+ 2
1− p

d
〈nj+xnjD

1
j − nj+xnjD

2
j 〉

∂t〈d1y〉 = (1− ηp)〈n〉 − 2〈d1y〉 − 2
1− p

d
〈njnj+yD

1
j+y − njnj+yD

2
j+y〉.

(81)

Our factorization assumption lets us simplify the four-point functions above, giving
e.g.

〈d1xj (D1
j+x +D1

j )〉 = 〈d1xj 〉∆1x

〈d1xj−x〉
〈nj〉

+

d/2∑
b6=a

〈d1bj−b〉〈d1bj 〉
〈nj〉2

 (82)

where
∆la(Oj) ≡ Oj +Oj+la. (83)

We also have

〈njnj+xD
2
j+x + nj+xnjD

2
j 〉 =

d∑
b=d/2+1

(
(〈nj〉 − 〈d1xj 〉)〈d1bj+x〉〈d1bj−b+x〉

〈nj+x〉2
+

(〈nj+x〉 − 〈d1xj 〉)〈d1bj 〉〈d1bj−b〉
〈nj〉2

)
(84)

〈nj+xnjD
1
j 〉 = 〈nj+xnjnj−x〉+ (d/2− 1)〈nj+xnjnj−wnj+w〉

→ 〈d1x〉2

〈n〉
+ (d/2− 1)

〈d1x〉3

〈n〉2
(85)

and similarly

〈nj+xnjD
2
j 〉 →

d

2

〈d1y〉2

〈n〉2
(〈n〉 − 〈d1x〉)

〈njnj+yD
1
j+y〉 →

d

2

〈d1x〉2

〈n〉2
(〈n〉 − 〈d1y〉)

〈njnj+yD
2
j+y〉 →

〈d1y〉2

〈n〉
+ (d/2− 1)

〈d1y〉3

〈n〉2
.

(86)
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Recapitulating, the mean field equations are

∂t〈n〉 =
1 + ηp

2
− 〈n〉+ 1− p

2

(
〈d1x〉2

〈n〉
− 〈d1y〉2

〈n〉

)
∂t〈d1x〉 = (1 + ηp)〈n〉 − 2〈d1x〉+ (1− p)

(
〈d1x〉2

〈n〉

(
2

d
+

(
1− 2

d

)
〈d1x〉
〈n〉

)
− 〈d1y〉2

〈n〉2
(〈n〉 − 〈d1x〉)

)
∂t〈d1y〉 = (1− ηp)〈n〉 − 2〈d1y〉+ (1− p)

(
〈d1y〉2

〈n〉

(
2

d
+

(
1− 2

d

)
〈d1y〉
〈n〉

)
− 〈d1x〉2

〈n〉2
(〈n〉 − 〈d1y〉)

)
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Written in terms of variables m, d± which have definite charges under the Z2 sym-
metry, this becomes

∂tm = ηp−m+
4(1− p)

1−m2

(
2d+d− −m((d+)2 + (d−)2)

)
∂td

+ =
1 + ηpm

2
− 2d+

+ 2
1− p

(1−m2)2

(
((d+)2 + (d−)2)

(
−1 + 2/d− (3 + 2/d)m2 + 4(1− 1/d)(1 +m2)d+ + (8/d)md−

) )
+ 2d+d−

(
(3− 2/d)m+ (2/d+ 1)m3 − 4/d(1 +m2)d− − 8(1− 1/d)md+

)
∂td

− =
m+ ηp

2
− 2d−

+ 2
1− p

(1−m2)2

(
((d+)2 + (d−)2)

(
−(3 + 2/d)m− (1− 2/d)m3 + 4(1− 1/d)(1 +m2)d− + (8/d)md+

)
+ 2d+d−

(
1 + 2/d+ (3− 2/d)m2 − 4/d(1 +m2)d+ − 8(1− 1/d)md−

) )
(88)

Finally, switching from d± to the connected correlation functions f± of the magneti-
zation, a henious amount of algebra produces

∂tm = ηp− 1 + 3p

4
m+

1− p

4
m3 +

1− p

4

(
2f+f− −m((f+)2 + (f−)2)

1−m2
+ 2(mf+ + f−)

)
∂tf

− = −2f− +
1− p

2d

(
2m(1−m2) + (1 + d+ (d− 3)m2)f− − 2f+m+ 2df−f+

− 1

1−m2

(
2m((f−)2 + (f+)2) + 2(1− 3m2)f+f−)

+
1

(1−m2)2
(
2m(f+)3 − 2(2d− 3)m(f−)2f+ + (d− 3)(1 +m2)f−(f+)2

+ (d− 1)(1 +m2)(f−)3
))

∂tf
+ = −2f+ +

1− p

2d

(
1−m4 + (1 + d+ (d− 3)m2)f+ − 2f−m+ 2d(f+)2

− 1

1−m2

(
4mf−f+ + (1− 3m2)((f+)2 + (f−)2)

)
+

1

(1−m2)2
(
2m(f−)3 − 2(2d− 3)mf−(f+)2 + (d− 3)(1 +m2)(f−)2f+

+ (d− 1)(1 +m2)(f+)3
))

.

(89)
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ethan: one kind of annoying thing is that the ordered fixed point at p → 0 can only be obtained by
cancelling the vanishing of f± in the numerator by the vanishing of 1 −m2 in the denomenator… The
existence of an ordered phase is most easily established by examining the stability
of the disordered fixed point. ethan: this argument only shows that spontaneous symmetry
breaking is impossible when d is large enough. I also need to rule out a situation where stable disordered
and ordered fixed points are simultaneously present… We can show that an ordered phase does
not exist when d is made large enough by showing that the disordered fixed point
remains stable for all p when d is sufficiently large. To this end, we first solve ∂tf

+ = 0
in the d → ∞ limit. This is done by expanding f+ as a series in 1/d. The leading O(1)
part is easiliy checked to vanish7 (as it should, on account of fluctuations vanishing as
d → ∞), while the leading 1/d part gives an equation that is easily solved to produce

f+ =
1− p

d(3 + p)
+O(1/d2). (90)

The mass matrix Mab = −δ∂tφ
a/δφb for φ = (m, f−) is

M =

(
1+3p
4

− 1−p
4
f+(2− f+) −1−p

2
(1 + f+)

1−p
d
(−(f+)3 + (f+)2 + f+ − 1) 2− 1−p

2d
((f+)2(d− 3) + 2(d− 1)f+ + d+ 1)

)
,

(91)
which is allowed to be not-symmetric by virtue of the non-equilibrium nature of the
present problem. Since f+ ∼ 1/d, we have

M |d→∞ =

(
1+3p
4

−1−p
2

0 3+p
2

)
+O(1/d). (92)

Both eigenvalues of M are thus positive and O(1) even when p = 0, provided d is large
enough. This shows that the model is always disordered for d > dc, with finite dc. In
the present mean field analysis it turns out that dc = 2, which agrees with the critical
dimension seen in numerics.

To see this graphically, the magnetization in d = 2 has a typical-looking phase
diagram (with a value of pc correspondingly smaller than that of S2):
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7The equation for the O(1) part is solved either by f+ = 0 or by f+ = 2√
1−p

− 1. This latter
solution is unphysical, since f+ is bounded from above by 1.
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The fluctuations of the magnetization have the same qualitative behavior as for S2.
Unlike S2 however, there is no ordered phase above d = 2: for d = 4, the magnetization
is simply
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〈 m〉 (94)

2.4.3 Proof that no equilibrium description exists

We have seen in S3 an example of a theory where, when fluctuations in m are ignored,
one obtains an unstable effective free energy Feff [m] incompatible with the existence
of an ordered phase. In this subsection we show that a situation like this cannot occur
for any dynamics that obeys detailed balance (that is, any dynamics whose Langevin
equation is obtained by differentiating a free energy). A priori one might imagine that
the sickness in Feff [m] could be cured by adding in additional fields φ2, φ3, . . . that
couple to m in some way, but the above statement means that this is not possible.

The proof is rather trivial. Consider a theory with field variables φa, where a is
some arbitrary index and φ1 = m is the magnetization. Without loss of generality,
the φa>1 can be taken to correspond to connected correlation functions involving the
m variables, which vanish in the d → ∞ limit where correlation functions factorize.

As above, define the mass matrix

Mab
φ∗ ≡ −δ∂tφ

a

δφb

∣∣∣
φ∗
, (95)

where φ∗ is a particular fixed point. The fixed point is stable only if all of the eigen-
values of Mφ∗ are positive.

Consider a situation where the d → ∞ limit gives an unstable solution for the
magnetization. This means that when we set φa>1 = 0, the m 6= 0 solution(s) of the
mean field equations are unstable. This statement is equivalent to M11

φ∗
< 0.

As we have seen above, adding additional fields φa>1 can stabilize the fixed point,
even when φa>1

∗ = 0. However, if the dynamics obeys detailed balance, the instability
remains. Indeed, if we are describing the dynamics with an effective free energy, M
must be a symmetric matrix. The assumption that all of M ’s eigenvalues are positive—
which means M is positive-definite, by symmetry—is then in contradiction with the
fact that 〈e1|M |e1〉 = M11 < 0 (where 〈a|e1〉 = δa,1). Therefore φ∗ cannot be a stable
fixed point if the dynamics is described by an effective free energy.
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3 Coarsening dynamics
In this section we will examine how coarsening occurs in the ordered phase. On general
grounds we expect the coarsening of the magnetiation m to be described by a Langevin
equation of the form

∂tm = K∇2m+ K̃a(∂am)2 − V ′(m)− h (96)

where V ′ = δV/δm is the gradient of an appropriate potential (e.g. V (m) = 1
4
(1 −

m2)2), and the KPZ-like interaction strengths K̃a are positive along some subset of the
spatial directions, and negative along the remaining directions. It is easy to show that
as long as the K̃a are not all equal, this equation cannot be the result of differentiating
a free energy.

In this section we will first see why (96) leads to squeezing-type coarsening dynam-
ics, and will then derive (96) in the context of the time-dependent Glauber dynamics
implementation.

3.1 Domain wall dynamics
3.1.1 one dimension

In order to see why the KPZ-like nonlinearities induce ballistic motion of minority
domains in the ordered state let us first consider what happens in 1d, where we have
simply a KPZ equation modified by the V ′(m) interaction:

∂tm = K∂2
xm+ K̃(∂xm)2 − V ′(m)− h. (97)

Consider a configuration where m changes monotonically from ±1 at x = −∞ to ∓1
at x = +∞. We claim that no such configuration can be a static solution to this PDE
if h or K̃ are nonzero. Indeed, setting ∂tm = 0, multiplying both sides by ∂xm, and
integrating over all of space, we have

K̃

∫
R
(∂xm)3 =

∫
R

(
−K∂xm∂2

xm+ ∂xmV ′(m) + ∂xmh
)

=

(
−K

2
(∂xm)2 + V (m) + hm

) ∣∣∣∣∣
+∞

−∞

= 2hσ,

(98)

where
σ ≡ sgn(m(∞)−m(−∞)) (99)

determines the parity of the domain wall. This equation obviously cannot be satisfied
if one (but not both) of K̃, h vanish, or when sgn(K̃) = −sgn(h) (since the sign of the
integral is σ). Even in the case where the signs match however, the integral on the
LHS will depend on K and V , which drop out on the RHS; thus for a generic value of
parameters no static solution will be possible in this case either.

Since no static solution exists, we expect that a domain wall of this form will
propagate ballistically. Assume then that m takes the form m(x, t) = m(x − R(t)),
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where R(t) is the location of the domain wall. We can then argue that R(t) evolves
ballistically by using a similar trick: multiplying (97) by ∂xm and integrating over
space, we have

0 =

∫
R

(
−(∂xm)2∂tR− K

2
∂x((∂xm)2)− K̃(∂xm)3 + ∂xV + h∂xm

)
. (100)

This trick is performed because ∂xm acts effectively as a (signed) delta function that
singles out the location of the domain wall R(t). Since the second and fourth terms
vanish, we have

2hσ =

∫
R

(
∂tR + K̃∂xm

)
(∂xm)2. (101)

Ignorning the detailed shape of the domain wall, we may thus take ∂xm → σT (x −
R(t)), where T (x) is an appropriate tophat function. We then conclude that

∂tR = σ(−CK̃ +Dh), (102)

where C,D are (positive) constants dependent on K and V . Thus domain walls
propagate ballistically in a direction determined by σ, K̃, and h. In particular, a
minority domain will either ballistically expand or contract, depending on wether or
not the sign of the magnetization in the domain agrees with the sign of −CK̃ +Dh.

3.1.2 two dimensions

Now consider two dimensions (the extension to d > 2 is straightforward). Consider
a minority domain with a domain wall at position R(θ, t), where θ is an angular
coordinate in the plane, and assume we may write m = m(r−R(θ, t)). We then switch
to polar coordinates, where ∂x = cos θ∂r − r−1 sin θ∂θ and ∂y = sin θ∂r + r−1 cos θ∂θ,
and ∂tm = −∂tR∂rm, ∂θm = −∂θR∂rm. Then

−∂tRm′ = K

(
m′′ +

1

r
m′ − ∂2

θR

r2
m′ +

(∂θR)2

r2
m′′
)
− V ′(m)− h

+ (m′)2
(
(K̃x cos

2 θ − K̃y sin
2 θ) +

(∂θR)2

r2
(K̃x sin

2 θ − K̃y cos
2 θ) + 2 cos θ sin θ(K̃x + K̃y)

∂θR

r

)
(103)

where we have saved space by writing m′ instead of ∂rm. We then perform the same
trick by multiplying both sides of the above equation by m′ and integrating over r,
taking m′ to be a step-like function of sign σ. This gives8

∂tR = −BK

(
1

R
− ∂2

θR

R2
+ σ

(∂θR)2

R3

)
+Dσh

− Cσ

(
(K̃x cos

2 θ − K̃y sin
2 θ) +

(∂θR)2

R2
(K̃x sin

2 θ − K̃y cos
2 θ) + 2 cos θ sin θ(K̃x + K̃y)

∂θR

R

)
(104)

where B,D,C are postitive constants dependent on the short-distance profile of the
domain wall. When K̃a = h = 0, this reproduces the slow inward shrinkage of the

8Really more terms in this expression can have their own constants, but for us this is not important.
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domain wall due to surface tension (the −BK/R term). When h or the K̃a are nonzero
they give R a constant velocity at large R. Keeping then only the terms that do not
vanish at large R, we have

∂tR = −σ
(
C(K̃x cos

2 θ − K̃y sin
2 θ)−Dh

)
. (105)

In the simplest case where K̃x = −K̃y ≡ −K̃ and h = 0, this becomes

∂tR = −CK̃σ cos(2θ), (106)

which correctly reproduces the desired squeezing motion.

3.2 Field theory from the Magnus expansion
We now derive (96) within the context of the time-dependent Glauber dynamics in-
troduced in Sec. 1.4. We will do this using the Floquet driving protocol introduced
when discussing the Glauber dynamics implementation. We will assume that ω−1 is
much longer than the local relaxation time, so that the system’s evolution is locally in
equilibrium. In this limit we expect the dynamics to be well described by a Langevin
equation of the form (ignoring the noise)

∂tm = (Ka + K̃a cos(ωt))∂
2
am− (h+ h̃ cos(ωt))− V ′(m). (107)

In the limit where the amplitudes K̃a, h̃ of the drive are small compared to ω, the
micromotion induced by the drive can be effectively rotated away using the Floquet-
Magnus expansion, producing an effective Langevin equation driven by a time-independent
drift operator. For this to be well-controlled, we need to thus work in the regime

J̃ , h̃ � ω � J, (108)

with the second inequality coming from the local relaxation time being ∼ 1/J . From
our general picture of how squeezing works, we do not expect working in this regime
to compromise the existence of a threshold.

The Magnus expansion is performed using the techniques of [3], which perform a
usual Magnus expansion familiar in quantum mechnaics to the differential operator
that appears in the Fokker-Planck equation. We will write the Langevin equation as
∂tm = f(m,ωt), with the drift term expanded in Fourier harmonics as

f(m,ωt) =
∑
l

fl(m)eilωt. (109)

For us only f0 and f1 = f−1 are nonzero, with

f0 = Ka∂
2
am− h− V ′(m), f±1 =

1

2
(K̃a∂

2
am− h̃). (110)

In this case, the results of [3] simplify to give an effective drift force feff(m) (with no
explicit time dependence) of

feff = − 1

ω2
[f1, [f0, f1]] (111)
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to leading order in 1/ω, where the commutator is defined as a Lie bracket on field
space: for two functionals g, h of m,

([g, h])[m(x)] =

∫
ddy

(
g[m(y)]

δ

δm(y)
h[m(x)]− h[m(y)]

δ

δm(y)
g[m(x)]

)
. (112)

Note that this expansion is essentially done in fl 6=0/ω: thus we only require that ω
be large compared to the amplitude of the drive, and not necessarily compared to the
size of the static part f0.

To calculate feff , we use

[c, V ′] = cV ′′

[c, ∂2
am] = 0

[∂2
am, ∂2

bm] = 0

[∂2
am,V ′] = −(∂bm)2V ′′′,

(113)

where c stands for the constant operator (for us either h̃ or h).9 Then one derives

[f0, f1] = −h̃V ′′ − K̃b(∂bm)2V ′′′. (114)

Taking the commutator of this with f1,

[f1, [f0, f1]] = 2h̃K̃a(∂am)2V ′′′′ + h̃2V ′′′ − K̃aK̃b[∂
2
am, (∂bm)2V ′′′]. (115)

Evaluating the last commutator under the simplifying assumption that δ5V/δm5 = 0
and collecting terms, we arrive at10

∂tm = Ka∂
2
am− h−

(
V ′ +

h̃2

ω2
V ′′′

)
− λa(∂am)2

− 2K̃aK̃b

(
2∂2

a∂bm∂bmV ′′′ + 2∂am∂bm∂a∂bmV ′′′′ + (∂a∂bm)2V ′′′) (116)

where

λa ≡
2h̃K̃aV

′′′′

ω2
. (117)

This yields (96) together with additional interactions that are unimportant for deter-
mining the qualitative behavior of the coarsening dynamics.

9The second line comes from ([c, ∂2
am])[m(x)] = c

∫
y
∂2
a,yδ(x− y) = 0.

10If we were to keep track of the noise as well, we would find a renormalization of the diffusion
constant. Since we are in any case not assuming FDT, this renormalization will not be important to
explicitly calculate.
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4 Phase diagrams
In this section we numerically calculate phase diagrams of the models S2,3, in various
dimensions and with different types of updates, and compare the results with the
predictions of the extended mean field theories developed above.

4.1 Generalities
We will identify phase transitions by plotting a normalized version of the Binder cu-
mulant

B =
3

2

(
1− 〈M4〉

3〈M2〉2

)
, (118)

where the total magnetization is M =
∑

imi and the expectation value is taken in
the non-equilibrium steady state. B is a function of the kurtosis of the magnetization
KM ≡ 〈M4〉/〈M2〉2. KM ≥ 1,11 so B ≤ 1. We also know that KM = 3 for a
Gaussian distribution (since the number of distinct ways to contract the four Ms is
1
2

(
4
2

)
= 3). Therefore we in general expect B to be close to 1 at small error rates—where

the fluctuations are small, so that 〈M4〉 ≈ 〈M2〉2—and to be close to zero at large
error rates, where the correlation length is small and the distributions of extensive
variables (such as M) become narrow Gaussians. Negative values of B mean that the
magnetization has a distribution with tails fatter than that of a Gaussian, which can
occur at intermediate noise rates near the transition.

We will also find it useful to analyze the susceptibility

χ =
1

Ld
(〈M2〉 − 〈|M |〉2), (119)

which will be used to attempt to extract the critical exponents. The factor of 1/Ld

in front ensures that χ = O(1) away from the critical point (although emperically the
location of the divergence in χ is a less reliable indicator of the phase transition than
the crossing point of B).

We will attempt to identify the critical exponents ν, χ, β through the scaling forms

B(t, L) = φB(tL
1/ν), χ(t, L) = Lγ/νφχ(tL

1/ν), |m| = L−β/νφm(tL
1/ν), (120)

where t ≡ (p− pc)/pc and φB, φχ, φm are scaling functions. The usual hyperscaling re-
lations means that knowledge of two of these exponents (or any other pair) is sufficient
to obtain all other exponents.

All plots shown below will be at unbiased noise (for biased noise we expect a first
order transition in all cases). A summary of the results is shown below, where a ×
indicates that no transition occurs (the model is disordered at any nonzero p)

pc Sasynch
2 Sasynch

3 Ssynch
2 Ssynch

3

2d .039 .030 ? .15
3d × × .016 ?
4d .024 × ? ?

11This is just Jensen’s inequality.
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4.2 S2 rule
We start with S2, which from our previous analysis, we expect will generally have a
higher threshold than S3.

4.2.1 2d—asynchronous updates

The first thing to check is that S2, operating under asynchronous updates, has a high
probability of working as a reliable eroder. We can do this by running S2 on random
initial states with magnetization 1−2pinit, where pinit is thought of as the probability of
having an error in the initial state, and computing the expected value of the late-time
magnetization 〈m∞〉. Doing this gives
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which shows that S2 indeed operates as an eroder even when it lacks synchronicity.
We then compute B and χ, finding a transition around p2dc ≈ 0.039:
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p ≈ 0.039 is also the location at which the threshold in the relaxation time τ onsets.
Trying our best to collapse this gives ethan: all of the figures of χ should actually have y
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labels of L−γ/νχ
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which is actually fairly close to the Ising value of γI = 7/4.

4.2.2 3d—asynchronous updates

In three dimensions with asynchronous updates we expect either a first order transi-
tion, or the absence of an ordered phase entirely. The transition, if it exists, will be
invisible in the infinite-time steady state dynamics, which even at zero bias will have
a nonzero magnetization fixed by the asymmetry of the squeezing rule (this is in con-
trast to the second-order case, where the transition can be identified by computing the
susceptibility / Binder cumulant in the long-time steady state). We thus look instead
at the scaling of τ for initial states with magnetization aligned against the bias of the
squeezing rule.

Doing this indicates that there is no threshold for asynchronous updates, with
τ ∼ 1/p independently of L (note the log scale) (note: x axis should be p)
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This claim is substantiated by showing that S2 fails to function as an eroder in 3d.
With our choice of updates (two ∧s and one ∨), the system is biased towards negative
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magnetizations. Therefore in the TDL, we expect 〈m∞〉 → −1 for all pinit if S2 fails
to function as an eroder. Indeed, we find
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Thus in 3d, synchronicity breaking destroys the transition.

4.2.3 4d—asynchronous updates

For unbiased noise we expect a continuous transition. Indeed, in the present case
we find a transition around p4dc ≈ 0.024, which while significantly lower than p2dc (in
accordance with pc ∼ 1/d2) is still clearly nonzero:
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One may also check that S2 does function as a good eroder in 4d. A collapse to the
mean field values of ν = 1/2, γ = 1 is okay, but not great (smaller ν work better).

4.2.4 2d—synchronous updates

Synchronous updates for this model are observed to be much noiser than asynchronous
ones for this model, and for the current low-budget effort we will not try to pin down
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pc using B/χ, but rather by looking at τ . This gives a transition near p2d,synchc ∼ 0.09
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although we clearly need to get more serious data to estimate pc better (in particular
this value would give a smaller value for pc for S2 than S3 in the synchronous case, but
not in the asynchronous case).

4.2.5 3d—synchronous updates

Since S2 is an eroder under synchronous updates, we know there must exist a threshold.
Indeed, our low-budget numerics identify one around p3d,synchc ≈ 0.016:
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While it is not necessary, one may also check that S2 does erode initial errors when the
updates are synchronous. Since the breaking of the Z2 symmetry favors states with
negative magnetization, we expect plots of 〈m∞〉 for different L to cross at a value of
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initial errors pinit < 0.5. Indeed, we find a crossing around pinit ≈ 0.15:
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4.2.6 4d—synchronous updates

In 4d, asychronous updates were observed to yield a transition whose exponents may
be consistent with mean field values, as one would naively expect. What about for
synchronous ones?

The result appears slightly strange: B shows a very sharp dip around the location
of a divergence in χ, and an attempt at a scaling collapse (with a guess of pc = 0.155)
yields
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This is quasi-close to the mean-field values of ν = 1/2, γ = 1, but more rigorous
numerics will be required to know for sure.

4.3 S3 rule
Now we consider S3. Our previous analysis indicated that S3 should have a lower
threshold than S2, and this is indeed what we observe in the numerics. Like S2, S3

fails to have a threshold in 3d for asynchronous updates. More importantly however,
S3 also has no threshold for asynchronous updates in 4d. This shows that the S3 model
with asynchronous updates orders only in two dimensions.
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4.3.1 2d—asynchronous updates

For unbiased noise we find a transition around p2dc ≈ 0.0296:
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This is a fair bit lower than the critical point for S2 in the same situation, which
is consistent with our mean field and operator-based analysis above. Collapsing this
gives

10 0 10
tL 1/ν

0.4

0.6

0.8

1.0

B

L

10

20

40

10 0 10
tL 1/ν

0.02

0.04

0.06

0.08

0.10

0.12

L
γ
/ν
χ

L

10

20

40

S3 | asynch | ν= 1.00, γ= 1.53 (η= 0.47)

(132)

which gives η reasonably close to 1/2; fits to Ising exponents do not work very well.

4.3.2 3d—asynchronous updates

Given that S2 is disordered under asynchronous updates in 3d, we expect the same to
be true for S3. For this it is sufficient to compute 〈m∞〉 and show the absence of a
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threshold as a function of pinit. Doing this gives a plot very similar to the S2 case:
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4.3.3 4d—asynchronous updates
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Given that pc → 0 in the TDL, it is natural to wonder how well S3 erodes errors in
initial states. The generalization of Toom’s theorem to the asynchronous case would
say that if an asychronous CA A is such that A,A∨ are both eroders in the TDL with
probability 1 (over realizations of update patterns), then A has a phase transition at
an O(1) error rate (the converse, viz. that a model with a robust phase transition
must be an asynchronous eroder, is of course true).

Now if this generalization of Toom’s result is true, we expect S3 to not be an eroder
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in the TDL. This is indeed in accordance with numerics, which finds
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4.3.4 2d—synchronous updates

Making the updates synchronous increases the threshold by a factor of about 5 to
p2d,synchc ≈ 0.15:
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The current low-budget numerics give the following (rather poor) scaling “collapse”:
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One may also ask what happens when one applies synchronous updates, but breaks
time translation symmetry. We will address this by looking at what happens when at
each time step, synchronous ∨ or ∧ updates are applied randomly (with equally-chosen
probabilities).

Doing this is observed to reduce pc by around a factor of 10, to a value near that
of the completely asychronous updates, although the crossing of B and the peaks in
χ seem to be fairly well-separated at small L:

0.05 0.10
p

0.7

0.8

0.9

1.0

B

L

10

20

40

60

0.05 0.10
p

0

100

200

300

χ

L

10

20

40

60

2d | S3 | synch (T− breaking)

(138)

Collapsing this can be done, but yields very large values of ν, γ:
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It thus appears that getting rid of exact time translation invariance changes the uni-
versality class of the transition.
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4.3.5 4d—synchronous updates

Low-budget numerics for the synchronous case gives a rather unusual Binder ratio
behavior:
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A crude scaling collapse on this data actually works surprisingly well (with pc ≈ 0.2
as identified by the B crossing [although it occurs near the minimum in B]), but the
standard hyperscaling relations would give η ≈ −2. Could it be that the transition in
4d is not mean field like?
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5 Miscellaneous things

5.1 Adding noise
The Langevin equations derived above did not contain a noise term, although the
addition of one is straightforward. We use the generating functional approach by
defining

W [Γ] = 〈e
∑

i,t Γi,t∆i,t〉, (141)

where as usual 〈·〉 is in the non-eq steady state, and ∆i,t is the “jump field” si,t+1−si,t.
For simplicity we will just work with the rule S2. In terms of the probabilities used to
write down the master equation above, one finds

W [Γ] = exp

(
1

N

∑
i,t

(eΓi,t − 1)(1− Pi,t)

(
1− p

2
(PN∧S

i,t + PE∨W
i,t ) +

p

2
(1 + η)

)

+
1

N

∑
i,t

(e−Γi,t − 1)Pi,t

(
2
1− p

2
(2− PN∧S

i,t − PE∨W
i,t ) +

p

2
(1− η)

)) (142)

Since lnW generates connected correlation functions of ∆i,t, we can find the required
noise correlators by differentiating twice with respect to Γi,t. After doing this and
writing things in terms of m, we have

〈∂tmi,t∂t′mj,t′〉c = 2δt,t′δi,j

(
1− pηmi

+
1− p

4
(mi+y +mi−y +mi+x +mi−x +mi+ymi−y −mi+xmi−x)mi

)
.

(143)
Therefore if ξi,t is the noise added to the above deterministic Langevin equation for
m, 〈ξi,tξj,t′〉 must be equal to the RHS.

5.2 Heating
Maintaining memory in our models requires the breaking of detailed balance, viz. a
net flow of heat dissipation to the environment (a bath at temperature 1/β) to be
maintained. We can quantify the amount of heat flow dQ by using the fact that after
an update P (A → B) between two configurations A,B, the entropy dissipated into
the environment is

dS(A → B) = ln
P (A → B)

P (B → A)
, (144)

with dS = βdQ. The sign conventions here are such that when the system relaxaes
towards more likely states it dissipates heat to the environment (dQ > 0); moving to
less likely states by contrast requires injection of heat from the environment (dQ < 0).

Note that heat transfer is a kind of holonomy, since dQ is essentially a derivative
on configuration space: heat transfer comes only from the “area enclosed” by paths in
configuration space. For example, any process A → B → A is easily checked to result
in zero net heat exchange, since dQ(A → B) = −dQ(B → A).
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Consider a system with a time-periodic markov generator Mt, whose updates obey
detailed balance with respect to a time-dependent energy function Et, so that

ln
P (A

t−→ B)

P (B
t−→ A)

= β(〈Et|A〉 − 〈Et|B〉). (145)

We will let |πt〉 denote the (non-equilibrium) steady state at time t, with expectation
values of quantities being obtained by taking inner products with |πt〉 (e.g. the average
energy at time t in the steady state is 〈Et|πt〉). Then the expected value of the heat
transfer in the non-equilibrium steady state at time t is

〈dQt〉 =
∑
A,B

〈πt|A〉〈A|Mt|B〉(〈Et|A〉 − 〈Et|B〉)

= 〈πt|1−Mt|Et〉.
(146)

where 〈dQt〉 indicates expectation value in the non-equilibrium steady state. Now if
the Markov process was time-independent we would have 〈πt|M = 〈πt|, and hence
would correctly recover 〈dQt〉 = 0. As it is, for a time step dt we instead have
〈πt|Mt = 〈πt+dt|12, and so

〈∂tQ〉 = −〈∂tπ|Et〉. (147)

Letting the period of the Markov generator be τ , the average heat dissipation rate
over a period is

β〈∆Q〉 = 1

τ

∫ τ

0

dt 〈πt|∂tEt〉, (148)

viz. 〈∆Q〉 is just the time-averaged expectation value of ∂tEt.
In the stochastic error model, where Mt is independent of t but does not obey

detailed balance, we just calculate dQ directly using the update probabilities. For
example, the probability of making a spin flip for the two-control-spin squeezing rule
S2 is

P (si → −si) = p
1− siη

2
+

1− p

2

[
1 + si
2

(
(1− si+x)(1− si−x)

4
+

3− si+y − si−y − si+ysi−y

4

)

+
1− si
2

(
(1 + si+y)(1 + si−y)

4
+

3 + si+x + si−x − si+xsi−x

4

)]
(149)

12This fact probably does not deserve proof, but just in case. Let Mb
a ≡ Mb · · ·Ma, where

we set dt = 1 and let a, b ∈ {1, . . . , τ}. In the steady state, we have (Mτ+a
a )n = |πa〉〈πa| for

n → ∞. Multiplying both sides of this equation on the left by Ma and on the right by MT
a gives

(Mτ+a+1
a+1 )n = |Maπa〉〈Maπa|, and so Ma|πa〉 = |πa+1〉.
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