Noise in stochastic cellular automata

Doi-Peliti approach

Consider a lattice cellular automata defined by some local stochastic CA rule A. Let
m, be the operator that measures the value of the spin at site r (with eigenvalues in
{+1}), and let n, = ¥"=. Define the raising (a}) and lowering (a,) operators as usual
to satisfy
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[Ny Q] = —Op p iy, [y, al | = 5r7r/ai. (1

Finally, let (+| be the uniform sum over all spin configurations. Note that (+|al =
(+](1 = ny) and (+|ax = (+Iny.

Suppose A has [ different types of transitions, which it applies with probabilties
Qa, @ = 1,...,1. Let IIT7®2 be the projector onto states where the ath rule would
send a £ spin to a F spin. We can write the Hamiltonian generating the dynamics
(via. 0)|P) = —H|P)) as

l
H==% % dqu((af = (1 =)L 7" + (ar —ng)IFH77) (2)

r a=

Taking the expectation value of a single commutator of an operator O with H gives
the noise-averaged time derivative of O, and taking a double commutator of O with H
gives the variance of the noise appearing in the Langevin equation for O. To compute
the dynamics of the magnetization, we thus just need the relations

(Hllne, H) = —(+] Y qu(Ip7 7" = p777)
’ (3)
(e, [ne, H]] = =6 (+] Z (I ™77 + T 7))

To derive these, we used some of the above relations and the fact that e.g. n, 1%+t~ =
[1%*7~. Taking the inner product of the above expressions with the steady-state
probability distribution gives (pgn,) and (Jyn.0pn. )., respectively. This means that
the Langevin equation for n, is

(Ome) = =Y qu(Tp™ 7 =T 77) + &(1), (4)

where the noise &,(t) has correlations

(&(0)&w (1) = Gepbrp Y gy + T2, (5)
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Generating function approach

Define the generating function

W[z =In <H ezr<t>5nr<t>> , (6)

r.t

where on,(t) € {—1,0,+1} is the jump in the value of n, at time step t. Connected
correlation functions of 9;n, can be computed by taking functional derivatives of W
and then setting z = 0. Suppose that the CA dynamics occurs at a given site and
time step with probability dt — 0. Then we may write

W(z] = In <H (1 + dtha DI 7T 4 (e7* — 1)H§’+_>‘)> > . (7)

r.t

Since the applications of the CA dynamics at distinct space time points are indepen-
dent events (each site updating according to independent Poisson clocks), we can take
the expectation value inside the product. In the dt — 0 limit, we can then write

> / Dl — I 4 (7 =), 8

Taking first and second functional derivatives of W wrt 2z and setting z = 0 is then
easily checked to give the same Langevin equation as before.

Examples

Sanity check: just noise

Consider the trivial case where a single spin is subject to noise of strength p and bias

1. Then
1Fm
I = —— 9
2 ? ( )
with these transitions appearing with probability ¢+_,+ = pliT”. Thus, after tracking
down some factors of 2, we get

Om = p(n —m) +¢, (10)
where
(€@EE)) = 2p(1 —nm). (11)
The correlations of the noise make sense: if n = £1, then the state with m = +1 is
absorbing, and not subject to noise.

R squeezing code

Now consider the R squeezing code. Let n, = 1 —n,. Let a = 1 be the projectors
associated with the noiseless dynamics, and a = 2 the projectors associated with the
noise (which are the same as in the trivial example above). The former are

M7 = (1 — Ay g Pr—g) e

_ (12)
H}P’Jr_} = (1 = NpggNe—_g) N,



each appearing with strength (1 — p)/2. The variance of the noise is therefore, after a
bit of algebra,

(€06 (1)) = BBea (2001 = ) + =2 (1= 1) 3+ a5+ 105 = Ptasme )

+ (1 4+my)(3 — Mypyy — Mg — mrﬂ;mr_y)) >
(13)
What to make of this rather complicated expression? I’'m not really sure. Note that
even when p = 0, the ideal CA updates produce noise for the magnetization by virtue
of their stochasticity (unless m = +1, for which cases the noise variance correctly
vanishes when p = 0). It is also worth noting that if we were to take a mean-field
factorization, we would get

o2 =222 1 o(m)), (14)

meaning that when (m) is small, the noise actually decreases as p is increased.



