
Noise in stochastic cellular automata

Doi-Peliti approach

Consider a lattice cellular automata defined by some local stochastic CA rule A. Let
mr be the operator that measures the value of the spin at site r (with eigenvalues in
{±1}), and let nr = 1+mr

2
. Define the raising (a†r) and lowering (ar) operators as usual

to satisfy
[nr, ar′ ] = −δr,r′ar, [nr, a

†
r′ ] = δr,r′a

†
r. (1)

Finally, let 〈+| be the uniform sum over all spin configurations. Note that 〈+|a†r =
〈+|(1− nr) and 〈+|ar = 〈+|nr.

Suppose A has l different types of transitions, which it applies with probabilties
qa, a = 1, . . . , l. Let Π∓→±,ar be the projector onto states where the ath rule would
send a ± spin to a ∓ spin. We can write the Hamiltonian generating the dynamics
(via. ∂t|P 〉 = −H|P 〉) as

H = −
∑
r

l∑
a=1

qa
(
(a†r − (1− nr))Π

a,−→+
r + (ar − nr)Π

a,+→−
r

)
. (2)

Taking the expectation value of a single commutator of an operator O with H gives
the noise-averaged time derivative of O, and taking a double commutator of O with H
gives the variance of the noise appearing in the Langevin equation for O. To compute
the dynamics of the magnetization, we thus just need the relations

〈+|[nr, H] = −〈+|
∑
a

qa(Π
a,−→+
r − Πa,+→−

r )

〈+|[nr′ , [nr, H]] = −δr,r′〈+|
∑
a

qa(Π
a,−→+
r + Πa,+→−

r )
(3)

To derive these, we used some of the above relations and the fact that e.g. nrΠ
a,+→−
r =

Πa,+→−
r . Taking the inner product of the above expressions with the steady-state

probability distribution gives 〈pθnr〉 and 〈∂tnr∂t′nr′〉c, respectively. This means that
the Langevin equation for nr is

〈∂tnr〉 = −
∑
a

qa〈Πa,−→+
r − Πa,+→−

r 〉+ ξr(t), (4)

where the noise ξr(t) has correlations

〈ξr(t)ξr′(t′)〉 = δr,r′δt,t′
∑
a

qa〈Πa,−→+
r + Πa,+→−

r 〉. (5)
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Generating function approach

Define the generating function

W [z] = ln

〈∏
r,t

ezr(t)δnr(t)

〉
, (6)

where δnr(t) ∈ {−1, 0,+1} is the jump in the value of nr at time step t. Connected
correlation functions of ∂tnr can be computed by taking functional derivatives of W
and then setting z = 0. Suppose that the CA dynamics occurs at a given site and
time step with probability dt→ 0. Then we may write

W [z] = ln

〈∏
r,t

(
1 + dt

∑
a

qa
(
(ezr − 1)Πa,−→+

r + (e−zr − 1)Πa,+→−
r

))〉
. (7)

Since the applications of the CA dynamics at distinct space time points are indepen-
dent events (each site updating according to independent Poisson clocks), we can take
the expectation value inside the product. In the dt→ 0 limit, we can then write

W [z] =
∑
r

∫
t

∑
a

qa
〈
(ezr − 1)Πa,−→+

r + (e−zr − 1)Πa,+→−
r

〉
. (8)

Taking first and second functional derivatives of W wrt z and setting z = 0 is then
easily checked to give the same Langevin equation as before.

Examples

Sanity check: just noise

Consider the trivial case where a single spin is subject to noise of strength p and bias
η. Then

Π∓→± =
1∓m

2
, (9)

with these transitions appearing with probability q∓→± = p1±η
2

. Thus, after tracking
down some factors of 2, we get

∂tm = p(η −m) + ξ, (10)

where
〈ξ(t)ξ(t′)〉 = 2p(1− ηm). (11)

The correlations of the noise make sense: if η = ±1, then the state with m = ±1 is
absorbing, and not subject to noise.

R squeezing code

Now consider the R squeezing code. Let nr = 1 − nr. Let a = 1 be the projectors
associated with the noiseless dynamics, and a = 2 the projectors associated with the
noise (which are the same as in the trivial example above). The former are

Π1,−→+
r = (1− nr+x̂nr−x̂)nr

Π1,+→−
r = (1− nr+ŷnr−ŷ)nr,

(12)
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each appearing with strength (1− p)/2. The variance of the noise is therefore, after a
bit of algebra,

〈ξr(t)ξr′(t′)〉 = δt,t′δr,r′
〈

2p(1− ηmr) +
1− p

4

(
(1−mr)(3 +mr+x̂ +mr−x̂ −mr+x̂mr−x̂)

+ (1 +mr)(3−mr+ŷ −mr−ŷ −mr+ŷmr−ŷ)
)〉
.

(13)
What to make of this rather complicated expression? I’m not really sure. Note that

even when p = 0, the ideal CA updates produce noise for the magnetization by virtue
of their stochasticity (unless m = ±1, for which cases the noise variance correctly
vanishes when p = 0). It is also worth noting that if we were to take a mean-field
factorization, we would get

σ2
r =

3− p
2

+O(〈m〉), (14)

meaning that when 〈m〉 is small, the noise actually decreases as p is increased.
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