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1 SDE basics

We will begin by reviewing basics about stochastic differential equations and the var-
ious regularization procedures used to make them well-defined. As a physicist, one is
tempted to ignore details like these, but understanding them turns out to be crucial
for producing SDEs that converge correctly to thermal equilibrium. A nice reference
which dispelled some of my confusion on regularization conventions is [2]. Throughout,
φ = (φ1, . . . , φd) will denote a d-component object evolving according to a general SDE,
and ∂a will be used as shorthand for ∂/∂φa. In this section, φ will be assumed to take
values in Rd; the extension to the case where φ describes a point on a d-dimensional
Riemannian manifold will be considered in the next section.

A typical Langevin equation one might imagine writing down for φ is

∂tφ
a ?

= fa(φ) + λab(φ)ξb, (1)

where ξ is a white noise field with zero mean and unit variance:1

〈ξ(t)〉 = 0, 〈ξa(t)ξb(t′)〉 = δabδ(t− t′). (2)

When considering discritized regularizations of (1), it will be helpful to define the
Wiener process W (t) as the time integral of the noise (now switching to vector nota-
tion):

W (t) ≡
∫ t

0

dt′ ξ(t′). (3)

One easily verifies that 〈W (t)2〉 = t, as befitting a continuous-time random walk. In
the math literature, (1) is often written in discritized form as

dφ
?
= f dt + λ dW, (4)

where dW is morally Ẇdt→ ξdt.

The
?
= in (4) is present because this “equation” does not make sense without

specifying a bit more information about the definition of g dW . To understand why,

1Any nonzero mean can be absorbed into the drift term f , and any non-unit variance can be
absorbed by a rescaling of g.
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consider integrating (4) by summing up values of dφ at different discrete time steps.
Doing this produces

φ(t) = φ(0) +
N→∞∑
i=0

(
f [φ(tevi )](ti+1 − ti) + λ[φ(tevi )](W (ti+1)−W (ti))

)
, (5)

where the time ti ≤ tevi ≤ ti+1 at which we evaluate the functions f, g is a choice left
up to us. For the non-stochastic term, this choice is irrelevant: modifications to tevi
only modify the f part of the summand by terms of order (ti+1 − ti)2, which die in
the continuum (N →∞) limit. For the stochastic term, the choice matters: since the
noise is discontinuous in time, we obtain different results if the noise amplitude λ(φ(t))
for the ith time step is determined before or after φ absorbs the fluctuations imparted
to it by W (ti+1)−W (ti).

The Ito prescription

A natural choice is to let tevi = ti be the beginning of the interval, so that the instanta-
neous noise strength at the ith step is determined before the noise acts. This is choice
is called the Ito prescription, and its primary benefit is the fact that the amplitude
λ(φ(tevi )) and noise W (ti+1) −W (ti) are uncorrelated. When we write derivatives in
the usual way, we implicity mean that we are working with this convention:

dφ = f dt+ λ dW (Ito). (6)

The fact that g and dW are uncorrelated at each step means that, for any function
h(φ(t)),

〈
∫ t2

t1

dt h(φ(t))
dW

dt
〉 = 0, (7)

where the 〈·〉 indicate averaging over noise realizations. As a particular example,
consider computing 〈φ(t + ε)− φ(t)〉 to leading order in ε. With this prescription we
obtain the expected

1

ε
〈φ(t+ ε)− φ(t)〉 = f [φ(t)] + 〈λ[φ(t)]dWε(t)〉 = f [φ(t)], (8)

where
dWε(t) ≡ W (t+ ε)−W (t). (9)

The variance is also the expected

1

ε
〈(φa(t+ ε)− φa(t))(φb(t+ ε)− φb(t))〉 = λac[φ(t)]λbc[φ(t)], (10)

where we used
〈dW a

ε dW
b
ε′〉 = δab min(ε, ε′). (11)

A “disadvantage” of the Ito prescription is that the normal rules of calculus do not
apply. Specifically, the chain rule for the derivative of a function h(φ) is modified as

dh = ∂ah dφ
a +

1

2
(∂a∂bh)λadλbddt, (12)
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which is (a multivariate version of) Ito’s lemma. Heuristically, this is arrived at by
realizing that the term 1

2
(∂a∂bh)dφadφb in the Taylor expansion of h is not paramet-

rically smaller than the linear term, as it contains a piece like (λ dW )2, which is not
subleading on account of (dW )2 = dt in expectation. More details can be found in the
appropriate (rather abstrusely written) chapter of Zinn-Justin.

The Stratonovich prescription

Another acceptible choice—although only one of infinitely many other acceptible ones—
is to fix tevi = (ti+1 + ti)/2 to be the midpoint of the ith time interval. This choice is
called the Stratonovich prescription, and it is customary to put a ◦ to denote that one
is working in this prescription:

dφ = f dt+ g ◦ dW (Stratonovich). (13)

One benefit of this choice is that the chain rule is not modified in this prescription
(see any stochastic analysis book). However, since the noise strength and noise are
correlated during each step, the expectation value of quantities linear in the noise do
not necessarily vanish:

〈
∫ t2

t1

dt h(φ(t)) ◦ dW
dt
〉 6= 0. (14)

In particular, the expectation value of 〈φ(t+ ε)− φ(t)〉 is now, again to leading order
in ε, (writing φ(t)→ φ to save space)

1

ε
〈φa(t+ ε)− φa〉 = fa(φ) +

1

ε
〈
(
λac(φ) + ∂bλ

ac(φ)(φb(t+ ε/2)− φb)
)
dW c

ε 〉

= fa(φ) +
1

ε
∂bλ

ac(φ)λbd(φ)〈dW d
ε/2dW

c
ε 〉

= fa(φ) +
1

2
∂bλ

ac(φ)λbc(φ).

(15)

On the other hand, the variance is the same as in the Ito prescription:

1

ε
〈(φa(t+ ε)− φa(t))(φb(t+ ε)− φb(t))〉 = λac[φ(t)]λbc[φ(t)]. (16)

Thus the Stratonovich prescription gives results which differ from the Ito one by the
imposition of an additional contribution to the drift force. Note that the difference
is only present when λ(φ) is a nontrivial function of φ—if g is simply constant, the
two prescriptions are equivalent. Unfortunately (or fortunately, depending on one’s
taste), we will be required to think about nonlinear noise of this form when studying
Brownian motion on curved manifolds.

The Fokker-Planck equation

We now derive the FP equation in these two prescriptions. The usual derivation is done
using the Kramers-Moyal expansion, but the way in which the Taylor expansion works
has always seemed a bit mysterious to me. We instead take the following variational
approach. Let h(φ, t) be a function which vanishes as |t| → ∞ but which is otherwise
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arbitrary. Consider the expectation value over φ of the integral
∫

(dh/dt)dt = 0.
Letting P (φ, t) be the probability of observing φ at time t,

0 =

∫
Dφ

∫
dt P (φ, t)

(
∂th+ ∂ah〈dφaε〉+

1

2
∂a∂bh〈dφaεdφbε〉

)
, (17)

where dφε ≡ φ(t+ ε)− φ(t). Integrating by parts,

0 =

∫
Dφ

∫
dt h

(
−∂tP − ∂a(P 〈dφaε〉/ε) +

1

2
∂a∂b(P 〈dφaεdφbε〉/ε)

)
. (18)

We have computed the noise averages 〈dφaεdφbε〉 and 〈dφaε〉 above in both prescriptions,
which we need only to leading order in ε. Defining the effective drift

f̃a ≡

f
a (Ito)

fa +
1

2
∂bλ

acλbc (Strat)
(19)

we have

0 =

∫
Dφ

∫
dt h

(
−∂tP − ∂a(f̃aP ) +

1

2
∂a∂b(λ

acλbcP )

)
. (20)

Since h was chosen arbitrarily, we thus have

∂tP = ∂a

(
−f̃aP +

1

2
∂b(λ

acλbcP )

)
(21)

which we may rewrite casewise as

∂tP = ∂a

(
−faP +

1

2
∂b(λ

acλbcP )

)
(Ito)

∂tP = ∂a

(
−faP +

1

2
λac∂b(λ

bcP )

)
(Strat).

(22)

If we require that Peq ∝ e−F/T be a steady state, we evidently must choose fa such
that

f̃a =
1

2
∂b(λ

acλbc)− 1

2T
λacλbc∂bF. (23)

Naively one may have written down only the second term, but we see that in both
prescriptions, an additional force dependent on the derivatives of g must be added to
ensure the correct steady state. With this choice of f̃ , the FP equation becomes, in
either prescription,

∂tP = ∂a

(
Dab

(
1

T
∂bFP + ∂bP

))
= ∂a

(
DabP∂b ln(P/Peq)

)
, (24)

where

Dab ≡ 1

2
λacλbc. (25)

It is thus reassuring to note that after recieving addition input from physics (in the form
of the correct steady state distribution), the two regularization procedures produce
identical FP equations.
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2 Brownian motion on a Riemannian manifold

We now discuss how the results of the previous section are modified when φ lives on a
general d-dimensional Riemannian manifold M equipped with a metric g. A reference
for background reading on stochastic geometry is [1], which appears very intimidating
at first pass but which is actually quite good.

Let us first consider what sort of FP equation we would like to obtain. For motion
in the absence of a force, simple diffusion on M would correspond to2

∂tP ∝ ∆MP, (26)

where ∆M is the Laplace-Beltrami operator (aka the covariant Laplacian), which acts
on functions ψ ∈ C∞(M) as

∆Mψ = div(gradψ), (27)

where div and grad are the covariant divergence and gradient on M . In components,

∆Mψ =
1
√
g
∂i(
√
ggij∂jψ). (28)

To obtain P = e−F/T as a steady state, we should instead have

∂tP ∝
1
√
g
∂i

(
1

T

√
gPgij∂jF +

√
ggij∂jP

)
. (29)

The task is then to construct a model of Langevin dynamics which correctly reproduces
the above FP equations, perhaps modified to take into account more general types of
diffusion constants as with the Dab derived above.

There are two approaches to writing down Brownian motion on M : intrinsic and
extrinsic. We will mostly discuss the extrinsic approach. This approach relies on Nash’s
embedding theorem, which states that M can always be isometrically embedded in RD

for some D ≥ d. The strategy is then to obtain Brownian motion on M by a suitable
projection of Brownian motion on RD. We do this via the following theorem, the proof
of which I was unable to find in the literature:

Theorem 1. Let Π denote the tensor field which projects vector fields in RD to vector
fields in TM . Free Brownian motion on M , for which the Fokker-Planck equation
reads ∂tP = 1

2
∆MP , is generated by the following Stratonovich SDE:3

dφa = Πab ◦ dW b, (30)

where the dW a are independent Wiener processes with unit variance.

2Note that we are working in conventions where P is not a density, viz. normalization of probability
is
∫ √

gP = 1 (thus the probability density is instead
√
gP ).

3We are not bothering to distinguish between upper and lower indices as we will be working
entirely with vector fields embedded in RD with the natural Euclidean metric.
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Proof. A necessary requirement of the proposed SDE is that a system initialized on
M must stay on M for all time. It is easy to check that (30) satisfies this requirement.
Consider for example the case when M is codimension 1, so that we may define M as
a level surface of some function Ψ. Then the projector Π is simply

Π = 1− |∂Ψ〉〈∂Ψ|
||∂Ψ||2

. (31)

Since the Stratonovich calculus operates according to the conventional chain rule,

dΨ(φ) = ∂aΨΠab ◦ dW b = 0, (32)

on account of ∂Ψ ∈ ker(Π). An similar argument goes through when M has arbitrary
codimension.

The FP equation for (30) is

∂tP =
1

2
∂a(Π

ac∂b(Π
bcP )), (33)

and we claim that the RHS is equal to 1
2
∆MP . We will prove this by making use of

the fact that the lift of ∆M to RD is

∆Mψ = Πab∂b(Π
ac∂cψ), (34)

which is a nontrivial result whose proof is deferred to a separate subsection. With
this, we thus need only show that

Πab∂b(Π
ac∂cP ) = ∂a(Π

ac∂b(Π
bcP )). (35)

The difference of the LHS and RHS is

∂a(Π
ac∂bΠ

bcP ) + ∂aΠ
acΠac∂bP. (36)

This however vanishes on account of

∂aΠ
acΠbc = 0 (37)

for all b, since the vector field ∂aΠ
ab is orthogonal to TM .4 This completes the proof.

When (30) is written in Ito form, it becomes

dφa =
1

2
Πbc∂bΠ

ac dt+ Πab dW b, (38)

with faΠ ≡ 1
2
∂bΠ

acΠbc acting as an effective geometric force. When M is codimension
1, this term affords a simple geometric interpretation. In this case we may write
Π = 1− nnT for a unit normal vector n(φ). Then

faΠ = −1

2
na∂ · n+

1

2
nanc(n · ∂)nc. (39)

The second term vanishes, while the first term is proportional to the mean curvature:

faΠ = Kna, K ≡ −1

2
∂ · n. (40)

4For example, when M is codimension 1, we may write Πab = δab − nanb for some unit vector
na(φ), and ∂aΠacΠbc vanishes on account of (n · ∂)n = 0.
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Example 1. Consider Brownian motion on Sn. Then

dφa = (δab − φaφb) ◦ dW b (41)

where |φ|2 = 1. Checking that this gives the spherical Laplacian in cartesian coor-
dinates is a straigthforward but tedious exercise. More physical insight is gained by
transforming to coordinates intrinsic to the sphere. Consider as an example S2, and
write φ = (x, y, z). Since we may use the chain rule for Stratonovich calculus, trans-
forming to spherical coordinates (θ, ϕ) is easily (if again tediously) done. After doing
this and moving to the Ito prescription, some algebra yields

dθ = cot(θ) dt+ dW θ

dϕ =
1

sin(θ)
dWϕ,

(42)

where dW θ/ϕ are independent linear combinations of the dW x,y,z. The 1/ sin θ term
in dϕ appropriately reduces the noise strength when the particle is close to the poles.
Similarly, the drift term cot(θ)dt appearing in dθ acts as an effective force pushing
the particle away from the poles of the sphere (where the area is small), ensuring a
uniform steady state. In fact it is rather remarkable that the Stratonovich SDE in
(θ, ϕ) coordinates is purely stochastic, with no compensating geometric force; in this
prescription the correlation between the (θ, ϕ)-dependent noise strengths and the noise
itself are thus responsible from steering the particle away from the poles.5

The above discussion has focused only on free diffusion on M . If we want P ∝ e−F/T

as a steady state, we evidently must choose the drift term as

f̃a =
1

2
∂bΠ

ba − 1

2T
Πab∂bF. (43)

Thus the Langevin equations appropriate to the two situations are

dφa =
1

2

(
∂bΠ

ba − 1

T
Πab∂bF

)
dt+ Πab dW b (Ito)

dφa = − 1

2T
Πab∂bF + Πab ◦ dW b (Strat).

(44)

Note that since the gradient of F is projected by Π, the drift force it causes will not
cause leakage of supp(P ) out of M . The same is true for ∂bΠ

ba in the Ito prescription,
which cancels leakage of supp(P ) caused by dW b.

Finally, while all of the above has been formulated in an extrinsic approach (by
embedding M into RD), the Langevin and FP equations we have derived may be easily
transformed into intrinsic coordinates φi appropriate to M . This is done by recognizing
that Π serves as the induced metric on M , which allows things to be written in more
covariant forms a la (29). It is however still preferable to write things in terms of
Wiener processes living in Rd, d = dimM . For this reason we introduce vielbeins eia

5Of course the fact that these correlations produce a compensating drift force is no surprise, and
was already displayed above in the definition of f̃a.
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for the metric g on M , to which we couple an Rd Wiener process dW a. The Langevin
equation for free diffusion in this framework turns out to read

dφi =
1

2
√
g
∂j(g

ij√g) dt+ eia dW
a (Ito)

dφi = eia ◦ dW a (Strat),

(45)

whose FP equations can be checked to produce (29). We will omit the details due to
laziness.

Appendix: Laplace-Beltrami operator in projected form

As above, let M be a d-dimensional Riemannian manifold embedded in RD. Our goal is
to prove the following proposition, which provides a way of lifting the Laplace-Beltrami
operator on M to RD:

Proposition 1. The Laplace-Beltrami operator ∆M of M is lifted to RD takes the
sum-of-squares form

∆M =
D∑
a=1

Π2
a. (46)

In components, ∆Mψ =
∑

a Πb
a∂b(Π

c
a∂cψ) for any ψ ∈ C∞(M).

The following proof is a translation of a result proved in [1] into human interpretable
language.

Proof. In the proof (and as above), ∂ will be used to denote differentiation in RD,
while ∇ will denote covariant differentiation in M . a, b, c, . . . will denote indices of
objects in RD, and i, j, k, . . . will denote indices of objects in M .

Recall that in the present setting, the covariant derivative of a vector field Y ∈
Γ(TM) along another vector field X ∈ Γ(TM) (Γ(TM) being the standard notation
for vector fields on TM) is

∇XY = Π(∂XY ). (47)

If we lift X, Y to vector fields on RD, in components this reads Xa∇aY
b = Πb

aX
c∂cY

a.6

Let ∇ψ = Π(∂f) ∈ Γ(TM) be the gradient of ψ ∈ C∞(M) lifted to a vector field
on RD. Since ∇ is stabilized by Π, we may insert a resolution of the identity as

∇ψ =
∑
a

ea(ea · ∇ψ) =
∑
a

Πa(Πa · ∂ψ), (49)

6The fact that the projection gives the correct connection is proved by recalling that the Levi-
Civita connection is the unique connection which is metric compatible, meaning that X(gM (Y, Z)) =
gM (∇XY, Z) + gM (Y,∇XZ), where X,Y, Z ∈ TM and gM is the induced metric on M . That the
projected derivative does the job can be shown by lifting things to RD: letting · denote the standard
inner product in RD, and using the fact that the embedded metric satisfies gM (X,Y ) = X · Y for all
X,Y ∈ Γ(TM),

X(gM (Y, Z)) = X(Y · Z) = (∂XY ) · Z + Y · (∂XZ)

= (Π(∂XY )) · Z + Y · (Π(∂XZ))

= gM (∇XY, Z) + gM (Y,∇XZ),

(48)

where we used the fact that ((1−Π)∂XY )·Z = 0 on account of Z ∈ Γ(TM) (and likewise for Z ↔ Y ).
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where we used Πa · ∇ψ = Πa · Π∂ψ = Πa · ∂ψ. To get the Laplace-Beltrami operator,
we need to take the covariant divergence of ∇ψ, which is

∆Mψ = ∇ · (∇ψ) =
∑
a

(∇ · Πa)(Πa · ∂ψ) +
∑
a

(Πa · ∂)(Πa · ∂ψ). (50)

The theorem will then follow if we can show that the first term on the RHS vanishes.
To do this, recall that the covariant divergence of a vector field X ∈ Γ(TM) is

∇ ·X =
d∑
i=1

gM(Vi,∇ViX) =
d∑
i=1

V a
i V

b
i ∇bX

a, (51)

where the {Vi} are a collection of vector fields on RD that form an orthonormal basis
for TM (and gM is the induced metric on M). We then use a standard trick by going
into Riemann normal coordinates, where the Christoffel symbols of the connection
(locally) vanish. Then

∇ · Πa =
∑
i

gM(Vi,∇ViΠa) =
∑
i

VigM(Vi,Πa)− gM(∇ViVi,Πa), (52)

since ∇ is compatible with gM . But the vector fields ∇ViVj = (∂iδ
k
i + Γkilδ

l
j)∂k = 0

vanish for all i, j, since the Christoffel symbols (locally) do. Therefore

∇ · Πa =
∑
i

VigM(Vi,Πa) =
∑
i

Vi(Vi · Πa) =
∑
i

Vi(Vi · ea) =
∑
i

(∂ViVi · ea) (53)

since ∂ea = 0. Then we may finally show that∑
a

(∇ · Πa)(Πa · ∂ψ) =
∑
a,i

(∂ViVi, ea)Πa · ∂ψ

=

(∑
i

Π

[∑
a

(∂ViVi · ea)ea

])
· ∂ψ

=
∑
i

(Π[∂ViVi]) · ∂ψ

= 0,

(54)

since ∂ViVj is orthogonal to TM for all i, j on account of ∇ViVj = 0 and ∇ViVj =
Π(∂ViVj). This shows that

∆Mψ =
∑
a

(Πa · ∂)(Πa · ∂ψ), (55)

completing the proof.

3 Application: relaxation by weak thermal baths

Consider a situation in which a system described by a vector of thermodynamic vari-
ables φ is coupled to a bath at temperature T . In the limit where the strength of
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the coupling to the bath vanishes, we assume that the system undergoes dynamics
that lead it to maximize an entropy function S(φ), and that it does so while con-
serving an energy function E(φ). From the above discussion we expect to be able to
describe this case with an Ito-prescription Langevin equation of the form (letting dW a

be unit-variance Wiener processes as above)

dφa = faS dt+ ASΠab dW b, (56)

where Π = 1 − nEnTE is the projector onto the isoenergy surface defined by the unit
normal naE = (∂aE)/||∂E||, and AS is a (in general φ-dependent) parameter determin-
ing the noise strength. Using the results developed above, the associated FP equation
is

∂tP = ∂a

(
−(faS − ASΠab∂bAS − A2

SKEn
a
E)P +

1

2
A2
SΠab∂bP

)
, (57)

where KE = −1
2
∂an

a
E is the curvature of the isoenergy surface at φ. To ensure that

eS(φ) is a steady state, we evidently must choose

faS = ASΠab∂bAS + A2
SKEn

a
E +

1

2
A2
SΠab∂bS. (58)

Note that on physical grounds it seems reasonable to let AS = AS[E(φ)] be a function
of the energy only; the first term on the RHS vanishes if this is true.

In the opposite limit where the coupling is strong, we assume that the dynamics
leads the system to minimize F (φ) = E(φ) − TS(φ) for a fixed bath temperature T .
In this case we may ignore the system’s ability to self-equilibrate and write

dφ = faB dt+ AB dW
a, (59)

where for simplicity the bath noise amplitude AB is assumed to be independent of φ.
We then obtain

∂tP = ∂a

(
−faBP +

A2
B

2
∂aP

)
, (60)

and having e−F/T as a fixed point thus requires that we set

faB = −A
2
B

2T
∂aF. (61)

We now consider the general case where both relaxation processes are active. We
may write the full Langevin equation as

dφa = ga dt+ (ABδ
ab + ASΠab) dW b, (62)

where ga is to be determined by fixing the correct steady state distribution. Letting
AB be independent of φ and assuming that AS depends only on E(φ), the associated
FP equation is, after some simplifications,

∂tP = ∂a

(
−
(
ga − (A2

S + 2ABAS)KEn
a
)
P +

1

2

(
A2
Bδ

ab + (A2
S + 2ABAS)Πab

)
∂bP

)
.

(63)
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From the above, we know that

ga|AS=0 = faB, ga|AB=0 = faS , (64)

where faB,S are as in (61), (58). It thus may seem reasonable to simply add the bath
and system drift forces together, by taking

ga → ganaive = faB + faS . (65)

Doing this however does not produce e−F/T as a steady state, which we expect it to
be as long as the system-bath coupling is nonzero. Indeed, inserting ganaive yields

∂te
−F/T = ∂a

(
2ABAS

(
KEn

a
E −

1

2T
Πab∂bF

)
e−F/T

)
, (66)

where we used Πab∂bS = − 1
T

Πab∂bF . Since nE ∈ ker(Π), the terms inside the paren-
thesis cannot cancel, and e−F/T will not be a steady state. In order to fix this, we must
add an additional term to the drift force proportional to ASAB to cancel the above
term. This means that e−F/T is a steady state only if we choose

ga = faS + faB + 2ABAS

(
KEn

a
E −

1

2T
Πab∂bF

)
= A2

SKEn
a
E +

A2
S

2
Πab∂bS −

A2
B

2T
∂aF,

(67)

where
A2
S ≡ A2

S + 2ABAS. (68)

Therefore we may describe the situation by saying that upon introducing the coupling
to the bath, the Langevin equations of the system and bath in isolation may added
together, provided one first renormalizes the system noise strength by sending AS →
AS.

Appendix: anisotropic noise

The above analysis was performed assuming that the strengths of the noises dW a were
uniform in RD. In a more general setting, it is entirely possible for certain directions
of the noise to be stronger than others; by FDT, this means simply that the transport
coefficients determing the relaxation of φa may have anisotropy in RD beyond the
anisotropy present in ∂aF (or ∂aS, as the case may be).

Consider first the bath only case, where no conservation laws are present. We may
then write

dφa = faB dt+
√

2TMab
B dW b (69)

for some (in general φ-dependent) matrix MB. Define the matrix

ΓB ≡MBM
T
B . (70)

Then using the above results, the requirement that e−F/T be a steady state fixes faB
so that the Langevin equation reads

dφa = (T∂bΓ
ab
B − ΓabB ∂bF )dt+

√
2TMab dW b. (71)
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Application: relaxation by weak thermal baths

It is worth reiterating that when the noise matrix Mab has nontrivial dependence on
φ, the drift force must contain a term which is independent of F . Using Ito’s lemma,
we can check how F changes in expectation:

〈dF 〉 = ∂aF 〈dφa〉+ T∂a∂bF [MMT ]ab dt

=
(
∂aF (T∂bΓ

ab
B − ΓabB ∂bF ) + TΓabB ∂a∂bF

)
dt

=
(
−(∂F )T ΓB (∂F ) + T∂a(F∂bΓ

ab
B )
)
dt,

(72)

since in Ito’s prescription the expectation of the dW piece vanishes. ΓB is positive
semidefinite, so d〈F 〉/dt ≤ 0 when ΓB is φ-independent. While the total derivative
term can change this when ΓB has φ dependence, H(P |Peq) is always monontically
decreasing, regardless of ΓB. Indeed, the FP equation one obtains from this Langevin
equation is

∂tP = ∂a(Γ
ab
B (∂bFP + T∂bP )) = ∂a(TΓabBP∂b ln(P/Peq)). (73)

Thus as promised,

∂tH(P |Peq) = ∂t

∫
DφP ln(P/Peq)

=

∫
Dφ∂tP ln(P/Peq)

= T

∫
Dφ∂a(Γ

ab
BP∂b ln(P/Peq)) ln(P/Peq)

= −T
∫
DφP [∂ ln(P/Peq)]TΓB[∂ ln(P/Peq)]

≤ 0,

(74)

where the second line follows from ∂tP being a total derivative and the last from the
fact that ΓB is PSD and P is everywhere non-negative.

A similar story goes through in the case of energy-preserving noise. Here we con-
sider

dφ = fS dt+
√

2ΠMS dW. (75)

Define the matrix
ΓS ≡ ΠMSM

T
S Π. (76)

Then fixing fS to guarantee eS as a steady state, the Langevin and FP equations are

dφa = (∂bΓ
ab
S + ΓabS ∂bS)dt+

√
2ΠacM cd

S dW d (77)

and
∂tP = ∂a(Γ

ab
S (−∂bSP + ∂bP )) = ∂a(Γ

ab
S P∂b ln(P/Peq)). (78)

A similar statement about the monotonicity of H(P |Peq) of course holds here as well.
Finally, in the case where both types of relaxation processes are operative, we have

dφ = f dt+
√

2T (MB + ΠMS) dW. (79)

12



REFERENCES

Since we want e−F/T as the steady state, this is really no different than the uncon-
strained case considered above. It is sometimes conceptually helpful to break up Γ
into energy-conserving and energy-nonconserving parts, although in general this sepa-
ration can be rather arbitrary. In one convention, we may write the Langevin and FP
equations as

dφa =
(
T∂bΓ

ab
B − ΓabB ∂bF + ∂bΓ

ab
S + ΓabS ∂bS

)
dt+

√
2T (Mab

B + ΠacM cb
S )dW b (80)

where

ΓB = MBM
T
B + ΠMSM

T
B +MBM

T
S Π, ΓS =

1

T
ΠMSM

T
S Π, (81)

and
∂tP = ∂a

(
ΓabB (∂bFP + T∂bP ) + ΓabS (−∂bSP + ∂bP )

)
. (82)

Note that ∂bΓ
ab
S = 0 if MS = MS[E(φ)] is a function only of energy.
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[2] N. G. Van Kampen. Itô versus stratonovich. Journal of Statistical Physics, 24:175–
187, 1981.

13


	SDE basics
	Brownian motion on a Riemannian manifold
	Application: relaxation by weak thermal baths

